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Abstract

Background: The use of DNA barcodes for the identification of described species is one of the least controversial and most
promising applications of barcoding. There is no consensus, however, as to what constitutes an appropriate identification
standard and most barcoding efforts simply attempt to pair a query sequence with reference sequences and deem
identification successful if it falls within the bounds of some pre-established cutoffs using genetic distance. Since the
Renaissance, however, most biological classification schemes have relied on the use of diagnostic characters to identify and
place species.

Methodology/Principal Findings: Here we developed a cytochrome c oxidase subunit I character-based key for the
identification of all tuna species of the genus Thunnus, and compared its performance with distance-based measures for
identification of 68 samples of tuna sushi purchased from 31 restaurants in Manhattan (New York City) and Denver,
Colorado. Both the character-based key and GenBank BLAST successfully identified 100% of the tuna samples, while the
Barcode of Life Database (BOLD) as well as genetic distance thresholds, and neighbor-joining phylogenetic tree building
performed poorly in terms of species identification. A piece of tuna sushi has the potential to be an endangered species, a
fraud, or a health hazard. All three of these cases were uncovered in this study. Nineteen restaurant establishments were
unable to clarify or misrepresented what species they sold. Five out of nine samples sold as a variant of ‘‘white tuna’’ were
not albacore (T. alalunga), but escolar (Lepidocybium flavorunneum), a gempylid species banned for sale in Italy and Japan
due to health concerns. Nineteen samples were northern bluefin tuna (T. thynnus) or the critically endangered southern
bluefin tuna (T. maccoyii), though nine restaurants that sold these species did not state these species on their menus.

Conclusions/Significance: The Convention on International Trade Endangered Species (CITES) requires that listed species
must be identifiable in trade. This research fulfills this requirement for tuna, and supports the nomination of northern
bluefin tuna for CITES listing in 2010.
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–The question is not what you look at, but what you see

Thoreau

Introduction

The cognomen ‘‘bluefin tuna’’ encompasses three distinct species:

southern bluefin tuna (Thunnus maccoyii, Castelnau 1872), Pacific

bluefin tuna (T. orientalis, Temminck & Schlegel 1844), and northern

bluefin tuna (T. thynnus, Linnaeus 1758) [1]. As sushi, bluefin are

unrivaled in popularity, and the economic value per fish unmatched

by any other species [2]. Immediate demand for bluefin has

far outpaced efforts for long-term management threatening the

persistence of this species triad. As a result, in a recently published

sushi advisory guide, a collective of conservation organizations

urged consumers to avoid eating bluefin altogether [3]. Efforts to

extend the public’s appreciation of bluefin beyond sushi highlight

iridescent grandeur [4,5]: fish that can exceed a ton in weight [6],

reach speeds of over 50 km/h [7], cross ocean basins [8], depths

and temperatures [9–11], returning to spawn in the same ancestral

waters [12] fished by people for millennia [13]. Efforts to garner

reverence for bluefin—and with it a popular prohibition against

consuming them—are limited because tuna sushi is often made with

less imperiled species. Distinguishing bluefin’s smallest essence, its

DNA, plays a role in cultivating conscientious consumerism and

effective regulation by eliminating market ambiguity.
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Molecular forensics provide one of the few means for identifying

fish sold in retail both due to insufficient labeling requirements or

rampant mislabeling of the product [14]. In the US, the Food and

Drug Administration (FDA) maintains a registry of 93 approved

market names (http://www.cfsan.fda.gov/,frf/seaintro.html) to

protect consumers against economic fraud. Cases of fraud have

been best documented in red snapper mislabeling [15–18].

Whereas the name ‘‘red snapper’’ is approved for use by the

FDA only for the species Lutjanus campechanus, all eight members of

the genus Thunnus are to be sold according to the FDA simply as

‘‘tuna.’’ In total there are only 45 species-specific FDA market

names for fish. While molecular identification plays an important

role in confirming the identity of these species, it is often the only

way of identifying the other 87 species of commercial importance

[19].

Several suitable molecular methods for identifying market

samples exist [reviewed in 20,21]. Here we assess the efficacy

of using cytochrome c oxidase subunit I (cox1) for Thunnus

identification. The Consortium for the Barcode of Life (CBOL)

directs a global effort to assemble a cox1 sequence reference library

for every species of fish on earth (http://www.fishbol.org) in an

effort to establish this gene as the de facto biological identification

marker. DNA-based identification was one of the first applications

of molecular taxonomy [22], and has been applied towards

identifying caviar since the mid-1990s [23]. What differentiates

barcoding is the scale of the CBOL effort, and the ultimate vision

of making the identification of most life forms on earth, accessible

to anyone irrespective of their taxonomic literacy, via a handheld

device the size of a cell phone [24]. As the invention of the

spectroscope allowed people to identify elemental composition of

stars and enriched our understanding of the universe [25], a

handheld barcoding device will do so for our understanding of life

on Earth.

A study conceived by a pair of high school students

documenting mislabeling of sushi [26] augurs the potential for

CBOL to enrich our lives, but also highlights several critical issues

that must be addressed before barcoding is democratized. The

Consortium for the Barcode of Life has developed the Barcode of

Life Database (BOLD), an online identification system (IDS)

where cox1 sequences can be entered and identified with the ease

of an internet search [27]. One challenge that must be addressed is

technological. Obtaining cox1 sequences to enter into BOLD

currently requires the expertise of scientists [18], operating large

sequencers costing hundreds of thousands of dollars–a reality that

has sometimes been obscured [28].

It is unlikely that sequencing technology can be miniaturized to

a handheld device in the near future [29]. A personal barcoder will

instead likely use microarrays, utilizing species-specific oligonucle-

otide probes [30]. If BOLD hopes to facilitate the development of

such technology, it will require not only a technical overhaul of the

identification methods currently employed by BOLD, but a

philosophical shift in how barcodes are interpreted and species

identified.

Currently, the Fish-BOL library is roughly one fifth complete

and still there are fundamental questions as to how the sequences

should be read. Since Cesalpino in the Renaissance [31], most

classification schemes have relied on describing species using

discrete diagnostic characters [32]. Systematists favor treating

nucleotides as any other character [33,34]. While a character-

based paradigm has been in operation since the beginning of

DNA-based identification [23,35], barcoding as commonly

practiced (sensu Hebert et al. [36]) remains distance-based. In a

sense this is phenetics [37] reincarnate, though barcoding is not

atheoretical [38] but rather designates identifications based either

on similarity thresholds [39] or on phenetic clustering [36] using

neighbor-joining methods [40] under the premise that there will

be well-defined gaps between intraspecific and interspecific

distances [41]. At present the BOLD IDS relies on distance-based

identification despite the fact that such metrics have been rejected

by the systematics community for over two decades [42]. Distance-

based barcoding attempts to identify species as one would use

spectroscopy, but unlike elements, taxonomic classifications are

hypotheses, not the biotic equivalent to the periodic table of

elements, and will often fail because speciation is not linear [43].

Previous barcoding of Thunnus reveal the limitations of a

distance-based approach. The genus constitutes eight species:

blackfin tuna (T. atlanticus, Lesson 1831), longtail tuna (T. tonggol

Bleeker 1851), yellowfin tuna (T. albacares, Bonnaterre 1788),

bigeye tuna (T. obesus, Lowe 1839), albacore (T. alalunga,

Bonnaterre 1788), and the three aforementioned species of bluefin

[1]. Recently speciated taxa with large effective population sizes

that are reasonably stable may constitute particular challenges for

barcoding [44] and Thunnus appear to fulfill these criteria, though

the onset of industrialized fishing in the 1950s has eliminated the

stability of populations as they became stocks [45]. While the

monophyly of the genus is strongly supported [46], phylogenies

based on morphology [31], mtDNA [47], and rDNA [48] are not

entirely concordant.

Ward and colleagues [49] examined the suitability of cox1

barcoding for discriminating Thunnus species. They found a mean

intraspecific Kimura 2-parameter (K2P; [50]) distance of 0.11%

and interspecific distance of 1.04%. By constructing a neighbor-

joining tree, the authors were able to discriminate all species by the

criterion that samples from putative species clustered together.

However, only the cluster comprising albacore and Pacific bluefin,

tuna had significant bootstrap support. Rubinoff et al. [22] asked

‘‘is phylogenetics intrinsic to barcoding or are NJ clusters simply

convenient visualizations?’’ for what could be accomplished by

alternative methods such as BLAST scores. This question remains

unresolved by phenetic barcoders. Ward et al. were cautious,

referring to their results as phenograms rather than phylogenies

but nonetheless they compared their results to systematic

treatments. They noted Chow et al.’s conclusion that albacore

mtDNA has introgressed into the Pacific bluefin tuna genome

[47], and 56% support for the subgenus Neothunnus proposed by

Collette [31], a result that has since been challenged by a more

recent publication by Chow et al. [48] based on ribosomal DNA.

Wong and Hanner [18] used BLAST [51] and BOLD to

identify market purchased seafood, including four presumed tuna

samples, with mixed results. While they discovered the remarkable

substitution of the cichlid tilapia (Oreochromis) for ‘‘white tuna’’

(presumably albacore), their study failed to assign any of the three

tuna samples to the species level. This result is unsurprising

because they adopted a 97% similarity threshold, (in reference to

work on birds [39] and crustaceans [52]), which is almost thee

times the mean interspecific distance of Thunnus found by Ward

et al. [49]. Even at 100% sequence similarity there was no

agreement between databases on the identities of their tuna

samples.

Paine et al. [53,54] developed a hybrid approach to identify

scombrids combining nucleotide characters for cox1 consensus

sequences and consensus UPGMA distances with internal tran-

scribed spacer sequences to differentiate closely related species. The

use of consensus sequences eliminates the possibility of assessing

potential distance thresholds for identification and allows only the

use of characters that are shared by all members of a species for

identification.

DNA Barcoding of Tuna Sushi
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Here we present a molecular sequence character-based key for

diagnosing Thunnus species, and compare its performance with

phenetic approaches for identifying market samples of tuna. A

strictly character-based approach has the benefit of being

hypothesis-driven, readily compatible with taxonomic classifica-

tions, and necessary for the design of microarrays. In addition to

serving as another comparison of DNA barcoding methods

[22,41,44,55–57], this research clarifies which species of tuna

are being sold in sushi restaurants, the accuracy of menu listings,

and clarifies the identity of samples in instances where menus are

vague. The dire state of northern bluefin tuna populations

underscores the importance of assessing the luxury trade in tuna.

The current usage of the common name ‘‘northern bluefin’’

obfuscates the sheer abundance of this species in the southern

Atlantic less than half a century ago. Following the introduction of

industrial long-lining from Japan and purse seining from the US in

the late 1950s, catches peaked off Brazil between 1963–1967, and

the population collapsed to ecological and economic extinction

within a decade [58]. As a result, several nations formed the

International Commission for the Conservation of Atlantic Tunas

(ICCAT) in 1966 to ensure the long-term viability of remaining

stocks [59]. Now stocks in the western Atlantic have collapsed

prompting calls for a 5-year moratorium on this fishery [60]. In

2007, the eastern Atlantic catch was 61,000 tons, twice the quota

set by ICCAT [61], and in June of 2008 the European

Commission closed the fishery two weeks early as the result of

France and Italy grossly exceeding their allotted quotas [62,63].

However, in November 2008, at the conclusion of the biannual

commission meeting, ICCAT decided to allow a quota of 22,000

tons in the East Atlantic for 2009 [64]. Contrary to calls to close

the fishery completely by its own independent review [65],

environmental organizations, industry, and six member nations

[66], ICCAT seems determined to perpetuate policies its own

review labeled a ‘‘travesty of fisheries management.’’ As this

decision is a clear indictment that ICCAT has failed its mandate,

Monaco has placed a formal bid to list northern bluefin tuna at

the 15th meeting of the Conference of the Parties to CITES

(Convention on International Trade in Endangered Species) to be

held in March 2010 in Doha, Qatar (http://www.cites.org/eng/

news/sundry/2009/CoP15_dates.shtml). For any species to be

listed, it must be identifiable in trade [67]. This work hopes to

address that prerequisite.

Materials and Methods

Reference Sequences
We downloaded 89 cox1 sequences from GenBank for the eight

species of Thunnus published in Ward et al. [49] and Paine et al. [53]

to serve as reference sequences for use in deriving our character-

based key and against which samples could be identified using a

neighbor-joining phylogram [40] with Kimura 2-parameter-

corrected distances (K2P) [50]. We selected these sequences

following the recommendation of an authority on scombrid

taxonomy (B. Collette, pers. comm.). We aligned the reference

sequences using Geneious 4.5.3 (Biomatters; http://www.geneious.

com) and the alignment was trimmed to the 655 bp length of Ward

et al.’s [49] sequences.

Sample Collection
We collected samples between 5 June and 31 December 2008

from sushi restaurants in New York City, New York, and Denver,

Colorado. Whenever bluefin or a tuna species was included in a

menu, it was purchased. Otherwise, at most places we attempted

to purchase both regular tuna (the muscle cuts described in

Japanese as akami), and fatty tuna (toro) when available. When the

menu listing was ambiguous as to the species of tuna being sold,

the wait staff or chef were asked clarify ‘‘what kind of tuna’’ was

being served and if the reply was not a valid name, the question

was reiterated as ‘‘what species of tuna.’’ Prior to 14 June 2008, we

assumed that all sushi sold as ‘‘white tuna’’ was albacore, so staff

were not asked to clarify the species. When the cost was not

prohibitive and it was offered, sashimi (a slice of fish with no rice or

wasabi) was purchased instead of nigiri sushi to reduce potential

contamination due to handling.

Laboratory Methods
Samples collected from each order were preserved in 95% v/v

ethanol and total genomic DNA was extracted using the DNeasy

tissue extraction kit (Qiagen) following the manufacturer’s protocol.

The cox1 locus was PCR-amplified on a Mastercycler ep Gradient S

machine (Eppendorf) in 25 ml reactions using Illustra Ready-To-Go

PCR beads (GE Healthcare), 1 ml of DNA extract, and 0.5 ml

of each of the following primers: VF2_t1, 59–TGTAAAAC-

GACGGCCAGTCAACCAACCACAAAGACATTGGCAC–39,

FishF2_t1, 59–TGTAAAACGACGGCCAGTCGACTAATCA-

TAAAGATATCGGCAC–39, FishR2_t1, 59–CAGGAAACAG-

CTATGACACTTCAGGGTGACCGAAGAATCAGAA–39, and

FR1d_t1, 59–CAGGAAACAGCTATGACACCTCAGGGTGT-

CCGAARAAYCARAA–39 constituting the COI-3 primer cocktail

[68]. The following temperature cycling was used: 94uC for 2 min,

35 cycles of 94uC for 30 s, 52uC for 40 s, and 72uC for 1 min, with a

final extension at 72uC for 10 min. PCR products were purified

using AMPure magnetic beads (Agencourt) and cycle-sequenced

using primers M13F (-21), 59–TGTAAAACGACGGCCAGT–39,

M13R (-27), 59–CAGGAAACAGCTATGAC–39 [69], and the

BigDye 1.1 Terminator Reaction Mix (Applied Biosystems, Inc.).

Sequencing reactions were purified using CleanSEQ (Agencourt) and

ran through an ABI 3730xl DNA Analyzer. For tissues that failed to

amplify, the above PCR protocol was repeated using the COI-2

cocktail [68]. All cox1 sequences produced from this study were

deposited on NCBI GenBank (see Table 1 for accession nos.) and are

also provided as Supplementary Information (Document S1).

Sample Identification
We identified the samples using three approaches: characteristic

attribute diagnosis, sequence similarity, and K2P distance.

To construct a character-based key we visually inspected the

reference sequences for variable nucleotide sites that could serve as

diagnostics for the eight species. Sarkar et al. [70] expanding on

population aggregation analysis (PAA) [33], named such diagnostics

as characteristic attributes (CAs) and defined them as ‘‘a character state

found in one clade but not its sister group.’’ We adopt Sarkar et al.’s

terminology but redefine CAs in our phylogenetic-free context to

mean a character state that is unique to a species. A CA can be pure

(possessed by all members of a species and absent from all others), or

private (possessed by some members of a species but absent from all

others). In addition, CAs at a single position are termed ‘‘simple

CAs,’’ whereas combinations of characters at multiple positions are

termed ‘‘compound CAs.’’ After identifying a sufficient number of

CAs to differentiate the eight species represented in our reference

sequences, we identified the species origin of our samples by

detecting CA sites. We used the P-Elf Perl script [71] to automate

the identification of these sequences. For sequence similarity we

used NCBI’s nucleotide BLAST [51] server against NCBI GenBank

(http://blast.ncbi.nlm.nih.gov), and mined the BOLD Identifica-

tion System [27] (BOLD-IDS; http://www.boldsystems.org) to

identify each 655 bp-long sample sequence. The sample was

identified as the species with which it shares the highest percent

DNA Barcoding of Tuna Sushi
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Table 1. Restaurant data and identification of samples using BLAST, BOLD, and characteristic attributes (CAs).

GenBank
accession no.

Sample
ID

Highest
BLAST
pairwise
identity

Highest
BOLD
reference
sequence
similarity

Highest
BOLD all
species
similarity

Character-based
identificationa,b

Consensus
identification Menu listing

Verbal
clarifiation

Price/order

(US$)

FJ605741 JHL00400 99.8 = SBTb 99.84 = SBT 99.84 = SBT CCCCATATATTGGCRSBT southern bluefin
tuna

bluefin toro 7

FJ605742 JHL00401 99.8 = SBT 99.85 = SBT 99.85 = SBT CCCCATATATTGGCRSBT southern bluefin
tuna

bluefin toro 7

FJ605743 JHL00402 99.8 = BET 99.69 = BLK 99.8 = BET CCCCACGCATTGACRBET bigeye tuna chu toro bigeye 6.5

FJ605744 JHL00403 100 = BET 99.54 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna tuna yellowfind 3

FJ605745 JHL00404 98.8 = ESC no match 98.5 = ESC TTAAACAGACCAGTRNo ID escolar white tuna n/ae 3

FJ605746 JHL00506 100 = NBT 100 = NBT 100 = NBT CCTCACATGTTGACRNBT northern bluefin
tuna

toro bluefin 5.95 (mp)

FJ605747 JHL00507 100 = BET 99.69 = BLK 100 = BET CCCCACGCATTGACRBET bigeye tuna tuna tunaf 2.5

FJ605748 JHL00508 99.7 = ESC no match 99.85 = ESC CTAAACAGACCAGTRNo ID escolar white tuna n/ae 2.75

FJ605749 JHL00509 100 = BET 99.69 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna tuna maguro; tuna 2.5

FJ605750 JHL00510 100 = NBT 100 = NBT 100 = NBT CCTCACATGTTGACRNBT northern bluefin
tuna

bluefin toro 8.5

FJ605751 JHL00512 100 = BET 99.69 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna tuna tunaf

FJ605752 JHL00513 100 = NBT 100 = NBT 100 = NBT CCTCACATGTTGACRNBT northern bluefin
tuna

toro fatty tuna bluefin 12

FJ605753 JHL00514 100 = SBT 100 = SBT 100 = SBT CCCCATATATTAGCRSBT southern bluefin
tuna

fatty tuna bluefin 5.5

FJ605754 JHL00515 100 = YFT 100 = BLK 100 = YFT,
BLK, BET,
DOG

CCCCACGTATTGACRYFT yellowfin tuna tuna tunaf 2.75

FJ605755 JHL00516 100 = SBT 100 = SBT 100 = SBT CCCCATATATTAGCRSBT southern bluefin
tuna

fatty tuna bluefin 6.5

FJ605756 JHL00517 100 = BET 99.54 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna toro bluefin 5.95 (mp)

FJ605757 JHL00518 100 = NBT 100 = NBT 100 = NBT CCTCACATGTTGACRNBT northern bluefin
tuna

toro: Boston
bluefin

15

FJ605758 JHL00519 100 = NBT 100 = NBT 100 = NBT CCTCACATGTTGACRNBT northern bluefin
tuna

akami: Boston
bluefin

8

FJ605759 JHL00520 100 = NBT 100 = NBT 100 = NBT CCTCACATGTTGACRNBT northern bluefin
tuna

fatty tuna sushi bigeye 10

FJ605760 JHL00521 100 = NBT 100 = NBT 100 = NBT CCTCACATGTTGACRNBT northern bluefin
tuna

medium tuna
sushi

bigeye 9

FJ605761 JHL00522 99.8 = NBT 98.85 = NBT 98.85 = NBT CCTCACATGTTGACRNBT northern bluefin
tuna

tuna sushi bigeye 4.5

FJ605762 JHL00523 100 = BET 99.69 = BLK 100 = BET CCCCACGGATTGACRBET bigeye tuna maguro (tuna) red tunac 5.95

FJ605763 JHL00524 100 = YFT 100 = BLK 100 = YFT,
BLK, BET,
DOG

CCCCACGTATTGACRYFT yellowfin tuna maguro tuna bluefin 2.75

FJ605764 JHL00525 100 = NBT 100 = NBT 100 = NBT CCTCACATGTTGACRNBT northern bluefin
tuna

fatty tuna (bluefin) 8

FJ605765 JHL00526 100 = BET 99.54 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna medium fatty tuna bigeye 5

FJ605766 JHL00527 100 = BET 99.54 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna tuna bigeye 3

FJ605767 JHL00528 100 = ALB 100 = ALB 101 = ALB CTCCGCATATCAATRALB albacore seared albacore 3

FJ605768 JHL00529 100 = YFT 100 = BLK 100 = YFT,
BLK, BET,
DOG

CCCCACGTATTGACRYFT yellowfin tuna tuna bluefin 4

FJ605769 JHL00530 100 = NBT 100 = NBT 100 = NBT CCTCACATGTTGACRNBT northern bluefin
tuna

toro bluefin 11 (MP)

FJ605770 JHL00531 100 = BET 99.54 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna fatty tuna bigeye 5

FJ605771 JHL00532 100 = BET 99.54 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna tuna bigeye 3

FJ605772 JHL00533 100 = BET 99.54 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna tuna bigeye 7

DNA Barcoding of Tuna Sushi
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GenBank
accession no.

Sample
ID

Highest
BLAST
pairwise
identity

Highest
BOLD
reference
sequence
similarity

Highest
BOLD all
species
similarity

Character-based
identificationa,b

Consensus
identification Menu listing

Verbal
clarifiation

Price/order

(US$)

FJ605773 JHL00534 100 = BET 99.69 = BLK 100 = BET CCCCACGCATTGACRBET bigeye tuna toro bigeye 5

FJ605774 JHL00535 100 = BET 99.54 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna tuna bluefin 3

FJ605775 JHL00536 100 = BET 99.54 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna toro bluefin 8 (MP)

FJ605776 JHL00537 100 = BET 99.69 = BLK 100 = BET CCCCACGGATTGACRBET bigeye tuna tuna bluefin 2.85

FJ605777 JHL00538 100 = SBT 100 = SBT 100 = SBT CCCCATATATTGGCRSBT southern bluefin
tuna

toro belly tuna bluefin 5.5

FJ605778 JHL00539 100 = YFT 100 = BLK 100 = YFT,
BLK, BET,
DOG

CCCCACGTATTGACRYFT yellowfin tuna tuna (maguro) bluefin 2.5

FJ605779 JHL00540 99.7 = ESC No Match 99.85 = ESC TTAAACAGACCAGTRNo ID escolar white tuna (albacore) 2.25

FJ605780 JHL00541 100 = BET 99.54 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna tuna bluefin 3

FJ605781 JHL00542 100 = BET 99.54 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna toro bluefin 5

FJ605782 JHL00543 100 = BET 99.69 = BLK 100 = BET CCCCACGGATTGACRBET bigeye tuna tuna bigeye 5.5

FJ605783 JHL00544 100 = BET 99.69 = BLK 100 = BET CCCCACGGATTGACRBET bigeye tuna tuna yellowfin 2.9

FJ605784 JHL00545 100 = BET 99.54 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna toro yellowfin 5.50 (M/P)

FJ605785 JHL00546 99.8 = YFT 99.85 = ALT 99.85 = YFT,
BLK, BET,
DOG

CCCCACGTATTGACRYFT yellowfin tuna tuna bigeye 3

FJ605786 JHL00547 100 = BET 99.69 = BLK 100 = BET CCCCACGGATTGACRBET bigeye tuna tuna tunaf 3

FJ605787 JHL00548 100 = BET 99.69 = BLK 100 = BET CCCCACGGATTGACRBET bigeye tuna tuna makerel tunag 2.75

FJ605788 JHL00549 100 = YFT 100 = BLK 100 = YFT,
BLK, BET,
DOG

CCCCACGTATTGACRYFT yellowfin tuna yellowfin tuna N/A

FJ605789 JHL00550 100 = BET 99.54 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna tuna (maguro) red tunac 2.5

FJ605790 JHL00551 100 = BET 99.54 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna tuna (maguro) red tunac 2.5

FJ605791 JHL00552 100 = YFT 100 = BLK 100 = YFT,
BLK, BET,
DOG

CCCCACGTATTGACRYFT yellowfin tuna tuna bigeye 2.9

FJ605792 JHL00553 100 = BET 99.54 = BLK 100 = BET CCCTACGGATTGACRBET bigeye tuna bigeye toro (M/P) 5

FJ605793 JHL00554 100 = NBT 100 = NBT 100 = NBT CCTCACATGTTGACRNBT northern bluefin
tuna

o-toro (M/P) bluefin 6

FJ605794 JHL00555 99.8 = SBT 99.85 = SBT 99.85 = SBT CCCCGTATATTGGCRSBT southern bluefin
tuna

bluefin toro 7

FJ605795 JHL00556 100 = SBT 100 = SBT 100 = SBT CCCCATATATTGGCR SBT southern bluefin
tuna

fatty tuna/toro bluefin 12.50 (mp)

FJ605796 JHL00557 99.8 = BET 99.54 = ATL,
LON

99.85 = BET CCCTACGGATTGACRBET bigeye tuna tuna/maguro bigeye 9.5

FJ605797 JHL00558 100 = ESC no match 100 = ESC CTGAACAGACCAGTRNo ID escolar super white tuna white tuna, c 8.95

FJ605798 JHL00559 99.7 = ALB 99.69 = ALB 99.69 = ALB CTCCGCATATCAATRALA albacore albacore/a-ba-co 8.95

FJ605799 JHL00560 99.8 = PBF 99.85 = PBF 99.85 = PBF CTCCGCATACCAATRPBF Pacific bluefin tuna baby blue fin 6.50

FJ605800 JHL00561 100 = PBF 100 = PBF 100 = PBF CTCCGCATACCAATR PBF Pacific bluefin tuna chu toro bluefin 9.50

FJ605801 JHL00562 99.8 = PBF 99.85 = PBF 99.85 = PBF CTCCGCATACCAATR PBF Pacific bluefin tuna toro bluefin 13.00

FJ605802 JHL00563 99.8 = BET 99.4 = NBF 99.8 = BET CCCTACAGATTGACR BET bigeye tuna maguro (tuna) bigeye 5.25

FJ605803 JHL00564 100 = BET 99.85 = BLK 100 = BET CCCCACGGATTGACR BET bigeye tuna maguro (tuna) yellowfin 4.50

FJ605804 JHL00565 100 = ALB 100 = ALB 100 = ALB CTCCGCATATCAATRALB albacore albacore 4.00

FJ605805 JHL00566 100 = ESC no match 100 = ESC TTAAACAGACCAGTRNo ID escolar white tuna albacore 5.00

FJ605806 JHL00567 100 = NBF 100 = NBF 100 = NBF CCTCACATGTTGACR NBF northern bluefin
tuna

mid fat tuna bluefin 6.50

Table 1. Cont.
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pairwise identity for BLAST, or percent specimen similarity in

BOLD. In BOLD we used all species-level barcode records, as well

as the reference barcode database, which is deemed validated by the

criteria of having at least three sequences of at least 500 bp that

show less that 2% divergence [27].

We calculated the pairwise K2P distances using MEGA 4.1 [72]

for all 89 reference sequences to find the threshold that would

minimize the error of both false positive and false negative

identifications [41]. Because the threshold value using all reference

sequences is biased due to uneven taxon sampling, we also

determined optimal threshold values for five randomly selected

individuals of each species. Samples were identified against the 89

reference samples using the two threshold values described as well

as the smallest interspecific distance to minimize false negatives. In

addition, samples were re-identified by removing 3 reference

sequences that were shy of the 500 bp requirement used in the

BOLD reference database. An identification was deemed

ambiguous if the pairwise distance of the sample was lower than

the threshold value for multiple reference species, or if the distance

from a query to all reference species was larger than the

determined threshold value.

Tree-based identifications were conducted using distance as a

phylogenetic optimality criterion and more specifically the

neighbor-joining method [40] with the K2P substitution model

in MEGA. Node support was evaluated with 1000 bootstrap

pseudoreplicates. We deemed an identification successful accord-

ing to liberal tree-based criteria [73]: a query clusters with

conspecifics with a minimum of 50% node support, i.e. a node

present on a 50% majority-rule consensus tree. A more

conservative approach would identify only those samples that fall

within a monophyletic clade [56,57,74], and would require higher

support values.

Results

Of the 68 samples from 31 establishments (Table 1), eight were

listed on menus as bluefin, 4 as albacore, 1 as bigeye, and 1 as

yellowfin tuna. There was no written description as to which

species was being served for the other samples. For this latter

group, when asked for verbal clarification as to what species was

being served, 20 were said to be bluefin (with no indication as to

which species), 17 as bigeye tuna, 4 as yellowfin tuna, 1 as dorado

(Coryphaena hippurus), 3 as ‘‘tuna’’ (ambiguous but correct by the

U.S. Food and Drug Administration standards), 3 as ‘‘red tuna,’’

2 as ‘‘white tuna,’’ and 1 as ‘‘mackerel tuna.’’ One sample

(JHL403) was excluded as the interviewer slipped and used a

leading question with the example ‘‘yellowfin’’ to query the

species. The identity of two pieces identified on the menu as white

tuna was not verbally queried. Price per order ranged between

US$2.25 and $15 and ranged in mass between 9 and 40 grams.

Character-Based Identification
We identified 14 diagnostic positions at sites 262, 268, 271, 286,

313, 337, 358, 400, 409, 475, 487, 484, 508, and 535 (Figure 1).

The combination of these 14 sites resulted in 17 compound CAs

for the eight species. Longtail tuna, albacore, and Pacific bluefin

tuna all had a single nucleotide at each diagnostic site, whereas the

nucleotides for the other species were not fixed at some positions

yielding multiple compound CAs. Longtail tuna, southern bluefin

tuna, and northern bluefin tuna could all be identified by a simple

pure CA. Compound CAs differentiated the other species.

In constructing the key, we discovered anomalies in 2 reference

sequences from Paine et al. [53]. A blackfin tuna sequence

(GenBank accession no. DQ835884) had an ambiguous nucleotide

(N) at positions 268 and 400 and one bigeye tuna sequence

(DQ835863) had CAs identical to blackfin tuna (CTCCACG-

TATTGAC). We downloaded every publicly available cox1 bigeye

and blackfin tuna sequence from GenBank and BOLD and then

using MUSCLE [75] within Geneious ordered sequences by

similarity. This sequence (DQ835863) was grouped with blackfin

tuna and shared 5 pure simple CAs (Figure S1). These two Paine

et al. [53] sequences were not incorporated into the design of our

diagnostic key. The character-based key we constructed identified

all 63 samples (Table 1). Five samples did not match the CAs for

any species of tuna and these samples were subsequently identified

by both BLAST and BOLD as escolar (Lepidocybium flavobrunneum),

a species of gempylid snake mackerel.

Identification Using BLAST and BOLD
GenBank yielded a definitive top pairwise identity for all samples

tested with scores ranging from a low of 99.7% for escolar

(Lepidocybium flavobrunneum; JHL508 and JHL540), to 100% for all

other species (Table 1). Results from the BOLD all species searches

were in agreement with the GenBank results, except for samples that

BLAST returned as a highest match for yellowfin tuna. Both searches

yielded 100% identity, but whereas BLAST returned a single species

GenBank
accession no.

Sample
ID

Highest
BLAST
pairwise
identity

Highest
BOLD
reference
sequence
similarity

Highest
BOLD all
species
similarity

Character-based
identificationa,b

Consensus
identification Menu listing

Verbal
clarifiation

Price/order

(US$)

FJ605807 JHL00568 100 = BET 99.69 = BLK 100 = BET CCCTACGGATTGACR BET bigeye tuna tuna (maguro) bigeye 5.25

FJ605808 JHL00569 99.8 = ALB 99.85 = ALB 99.85 = ALB CTCCGCATATCAATRALB albacore white tuna (tombo) albacore 4.50

aNucleotides 262, 268, 271, 286, 313, 337, 358, 400, 409, 475, 487, 484, 508, and 535 based on the Ward et al. [49] sequences.
bSBT, southern bluefin tuna (Thunnus maccoyii); BET, bigeye tuna (T. obsesus); BLK, blackfin tuna (T. atlanticus); NBT, northern bluefin tuna (T. thynnus); ESC, escolar

(Lepidocybium flavobrunneum); DOG, dogtooth tuna (Gymnosarda unicolor); YFT, yellowfin tuna (T. albacares); ALB, albacore (T. alalunga); PBT, Pacific bluefin tuna (T.
orientalis).

cThis is not a recognized common name.
dAn interviewing error using ‘‘yellowfin’’ as a leading question disqualifies this result.
ePrior to 14 June 2008 staff were not asked to clarify the identity of white tuna.
fThough ambiguous, this is the accepted US Food and Drug Administration market name for all members of Thunnus.
gThis is an uncommon vernacular typically refering to kawakawa (Euthynnus affinis; http://www.fishbase.org).
doi:10.1371/journal.pone.0007866.t001
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match, the BOLD all species search yielded a 100% match for four

species: bigeye tuna, blackfin tuna, yellowfin tuna, and dogtooth tuna

(Gymnosarda unicolor), thus yielding ambiguous identifications for 10%

of the samples searched. The BOLD reference database matched

BLAST and BOLD all species searches for the three bluefin species

and albacore. The BOLD reference database failed to return an

identification for escolar, and yielded a top match for all samples

identified in the other databases as bigeye tuna or yellowfin tuna as

blackfin tuna. As a result, the BOLD reference database failed to

identify 62% of the samples.

Identification with Distance Thresholds and Neighbor-
Joining Phylogram

The mean intraspecific K2P distance for the 87 reference

sequences was 0.0022, the mean interspecific distance was 0.012

(Table 2), with no gap between intraspecific and interspecific

distances (Figure 2). The two aberrant sequences (DQ835884 and

DQ835863) found in constructing the diagnostic key were

removed for these calculations. The cumulative error from both

false positives and false negatives is minimized at 27% using a

threshold value of 0.005 (Figure 3). With even sampling, using five

reference sequences for each species, cumulative error is

minimized at 31% at DK2P = 0.065. The error from false negatives

is eliminated at DK2P.0.0104, and error from false positives is

eliminated at DK2P,0.00153 for both total and even sampling.

At DK2P = 0.005, 14% of the samples could be identified

(excluding those identified by database searches as escolar) while at

DK2P = 0.0065 no samples were identifiable. Using the threshold

that minimized cumulative error at DK2P = 0.00152, the optimal

threshold, 60 samples (95%) could be identified to the species level,

while three samples possessed intraspecific distances from the

references greater than this threshold. Without removing the

aberrant sequences, 41% of the samples could not be identified

with the criteria of an exact match (DK2P = 0.0).

Our neighbor-joining tree allowed for the identification of 2

samples as albacore, 2 samples as bigeye tuna, 2 samples as

northern bluefin tuna, and 2 samples as southern bluefin tuna

(12%), but was too poorly resolved to support the identifications of

any other samples (Figure 4).

Identification Consensus
The identifications garnered from our character-based key and

the all-species BOLD-IDS were in agreement with our BLAST

results, although BOLD was unable to differentiate yellowfin tuna

from three other species, and the character-based key made no

diagnosis when presented with samples other than tuna.

Identification via distance thresholds and neighbor joining were

deemed too unreliable for use in identification. Our samples

consisted of bigeye tuna (n = 30), northern bluefin tuna (n = 12),

yellowfin tuna (n = 7), southern bluefin tuna (n = 7), escolar (n = 5),

albacore (n = 4), and Pacific bluefin tuna (n = 3)(Table 1).

Nineteen of 31 restaurants erroneously described or failed to

identify the sushi they sold (Table 1). Twenty-two of 68 samples

were sold as species that were contradicted by molecular

identification (Table 1), while six samples were sold as ‘‘tuna’’ or

‘‘red tuna.’’ While ‘‘red tuna’’ is not considered an approved FDA

name, we do not consider this to be a misrepresentation. The five

samples of escolar sold as a variant of ‘‘white tuna’’ are considered

a misrepresentation because this species is a snake mackerel,

belonging to the distantly related family Gempylidae. Except for

escolar, no menu listings were contradicted by our analysis.

Samples identified as bluefin (0.46 US$/gram) tuna were more

expensive (Tukey HSD test, p,1024) than either bigeye

(0.19 US$/gram) or yellowtail tuna (0.12 US$/gram).

Discussion

The Utility of cox1 for Thunnus Identification
This research demonstrates that tuna fish species can be reliably

identified with cox1 barcodes using either our character-based key

or highest BLAST sequence similarity. The main limitation of

relying on BLAST searches for species identification, however, is

the potential for misidentified or low-quality sequences being

entered into GenBank [76,77]. One of the bigeye reference

sequences deposited in GenBank that we used (DQ835863) was

either mislabeled, misidentified or –at least to our knowledge– the

first documented case of introgression between bigeye and blackfin

tuna. Although this entry did not affect our BLAST results, there is

no way to ensure that BLAST identifications of tuna will remain

accurate into the future and should be used only as a first-pass or

corroborative identification strategy. Acknowledging this problem,

BOLD has a more selective set of submission criteria [27] and has

the advantage of using global alignments whereas BLAST uses

local alignments. That said, for a variety of reasons outlined below,

BOLD performed poorly at identifying tunas.

One of the stated benefits [78] of DNA barcodes is that unlike

traditional traits, ‘‘they can be obtained in a mechanized

manner…used without much background knowledge’’ [cited in

22]. BOLD is the realization of this philosophy, mechanizing the

acquisition of sequences and their analysis. This study, however,

illustrates that using the analytical tools supported by BOLD

Figure 1. Character-based key for all species of tunas (Thunnus)
derived from 87 reference sequences [49,53] constituting 14
nucleotides. Numbers in brackets indicate the number of individual
sequences. Nucleotide positions are numbered following Ward et al.’s [49]
sequences. Simple pure characteristic attributes (CAs; highlighted)
identify longtail (T. tonggol; LON), northern bluefin (T. thynnus; NBF),
and southern bluefin (T. maccoyii; SBF) tuna. Simple private CAs
(underlined) diagnose bigeye tuna (T. obesus; BET). Compound pure CAs
diagnose yellowfin tuna (T. albacares; YFT), blackfin tuna (T. atlanticus;
BLK), albacore (T. alalunga; ALB), and Pacific bluefin tuna (T. orientalis; PBF).
Though albacore mtDNA has introgressed into the Pacific bluefin tuna
mitogenome, compound pure CAs can differentiate these species
(boxed).
doi:10.1371/journal.pone.0007866.g001
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without significant background knowledge may yield results

fraught with error even for well-represented taxa such as tuna.

By default, searches on BOLD-IDS use their reference database

that is deemed verified according to the following criterion:

‘‘species with a minimum of three representatives and a maximum

conspecific divergence of two percent’’ [27]. Searches can also be

conducted using all records, or all species records, but these have

not been ‘‘validated.’’ According to Ratnasingham and Hebert’s

description of BOLD [27], it appears that validation requires only

that sequences meet the above verification criteria. The BOLD-

Table 2. Average K2P distance and diagnostic sites for the eight species comprising the genus Thunnus.

Species
(sample size) Albacore

Bigeye
tuna

Blackfin
tuna

Longtail
tuna

Northern
bluefin tuna

Pacific
bluefin tuna

Southern
bluefin tuna

Yellowfin
tuna

Average K2P distance

Albacore (12) 0.00172 0.02026 0.01574 0.01877 0.00313 0.01924 0.01773 0.01755

Bigeye tuna (15) 268, 286, 313, 358,
400, 478, 484

0.00313 0.00807 0.00666 0.01888 0.0106 0.0108 0.00509

Blackfin tuna (9) 313, 358, 400, 478,
484, 535

268, 286, 400,
484, 508

0.00386 0.00721 0.01616 0.01113 0.01246 0.0052

Longtail tuna (5) 262, 268, 313, 358,
478, 484, 535

262, 286, 400 262, 286, 400 0.00123 0.01685 0.00947 0.00988 0.00353

Northern bluefin
tuna (13)

268, 313, 337, 409,
478, 484, 535

271, 286, 337,
358, 400, 409

268, 271, 358,
400, 409, 484

262, 271, 337, 358,
400, 409, 484

0.00239 0.01833 0.01494 0.01651

Pacific bluefin
tuna (5)

475 268, 286, 313,
358, 400, 475,
478, 484, 535

313, 358, 400,
475, 478, 484,
535

262, 268, 313, 358,
475, 478, 484, 535

268, 271, 313,
337, 409, 475,
478, 484, 535

0.00046 0.00955 0.00774

Southern bluefin
tuna (5)

268, 313, 337, 478,
484, 508, 535

286, 337,358,
400, 484, 508

268, 337, 358,
400, 508

262, 337, 358, 484,
508

271, 337, 409,
484, 508

268, 313, 337,
475, 478, 484,
508, 535

0.00276 0.00867

Yellowfin tuna
(23)

268, 313, 358, 475,
478, 484, 535

# 268, 358, 400,
475, 484

262, 358, 475 271, 337, 358,
409, 475

268, 313, 358,
475, 478, 484,
535

337, 358, 475,
484, 508

0.00195

Diagnostic sites

# Private compound diagnostic. The predominant nucelotide sequence for T. albacares is C262 C268 C271 C286 A313 C337 G358 T400 A409 T475 T478 G484 A508
C535. The majority of T. obesus (n = 10) can be differentiated by T286 G400. One T. obesus (DQ835865) is differentiated by A286, two are differentiated by C400
(DQ835861, DQ835862), and two by G400.
doi:10.1371/journal.pone.0007866.t002

Figure 2. Cumulative intraspecific and interspecific K2P distances for 87 reference sequences. The maximum intraspecific distance was
0.01038 while the minimum interspecific distance was 0.00153.
doi:10.1371/journal.pone.0007866.g002
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IDS performs a linear search to collect nearest neighbors of all

reference sequences and then delivers an identification if the query

sequence shows a match of less than 1% divergence, or in the ‘‘few

instances’’ [27] where two or more reference taxa share less than

1% divergence, all possible matches are shown. We retrieved a

minimum of 5 candidate species for each of our sushi tuna sample

when mining BOLD-IDS. Wong and Hanner [18] identified

samples with the BOLD-IDS as the species with which it shared

the highest sequence similarity, provided that the distance did not

exceed 3%. Using the reference database, they identified

presumed yellowfin tuna samples as bigeye tuna, and identified

the samples as yellowfin or bigeye using the all-records database.

Both databases yielded 100% matches to the queries. Similarly,

though their identification criterion was less explicit, Yancy et al.

[79] identified two yellowfin samples using the BOLD reference

database. During our use of BOLD, (between 10 June 2008 and 4

January 2009), there were no bigeye tuna or yellowfin tuna in the

reference database, judged by visualizing the NJ tree output of

BOLD-IDS. BOLD-IDS returned blackfin tuna as the highest

match on these samples with 99.54–100% similarity to the nearest

reference sequence. Because there are multiple bigeye and

yellowfin tuna sequences deposited on BOLD it is conceivable

that between their analysis and ours someone deposited erroneous

sequences for the two species that diverged in excess of 2%,

resulting in the removal of the species from the reference database.

The lack of transparency in the BOLD system makes this

impossible to verify since many of the records that are used for

identification are not made public for inspection. Thus, it is

impossible to conclude how suspect identifications arose. For

example, when we identified yellowfin tuna using the all-species

database, BOLD-IDS returned a 100% match for 4 species. While

the NJ tree that BOLD-IDS constructs of the top 100 matches

could be viewed, none of the sequences for the non-yellowfin

nearest-neighbors could be inspected. It was thus impossible to

decipher if this result occurred because of problems associated

with NJ tree building (discussed below), or because the sequences

contained errors that could only be determined by visually

examining the nucleotide characters.

A mounting body of work rejects the objectivity and

functionality of identification thresholds [22,55,57,74,80,81], and

our results confirm that the smallest interspecific distance is a more

reliable threshold than mean interspecific distance [80]. Using all

reference sequences, at DK2P = 0.0 we were only able to identify

59% of our samples. Eleven samples exceeded this intraspecific

distance, while 15 samples possessed absolute similarity with two

species. By conducting a manual pairwise sequence comparison,

one reference sequence was responsible for this result. Viewing the

blackfin sequence DQ835884.1 revealed that it had been edited

with the character ‘‘N’’ at two sites. While this represents an

ambiguity of only 0.3% of the entire sequence, these two positions

(268 and 400) are critical for distinguishing species (Figure 1). By

removing this sequence, we achieved a 95% success rate at

DK2P,0.00153.

Such diagnosis is not possible using BOLD-IDS, and our failure

to definitively identify yellowfin tuna using all species records in

BOLD likely results from the sequences of the other three

candidate species (BOLD accession nos. SAIAB439-06,

SCFAC232-06, MXII115-07, SCFAC696-06, SCFAC002-05)

being either too short, or poor in quality due to sequencing or

editing errors. Thus for BOLD-IDS to work well for tuna, it seems

necessary to adopt more selective barcode criteria. This result may

also be explained by BOLD’s reliance on neighbor-joining to

determine the identity of the query to the closest 100 references.

Neighbor-joining is an attractive tree-building method because its

tree space exploration strategy yields a single best tree, and is

computationally fast, but its use has been widely disputed by the

systematics and cladistics community [42,56,82,83]. The single

tree provided by neighbor-joining is arbitrarily biased due to the

order in which sequences are searched in the event of tied-trees

[74,84,85]. Because the BOLD system does not incorporate any

measures of support, its output may be biased and misleading. For

instance, the tree constructed using the default parameters in

Figure 3. Cumulative error for committing false positives and false negatives with 87 reference samples according to K2P distance
thresholds. Error was minimized at 27% at DK2P = 0.005.
doi:10.1371/journal.pone.0007866.g003
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BOLD-IDS for all public Thunnus renders yellowfin tuna

polyphyletic (Figure S2).

Building consensus trees from bootstrap pseudoreplicates of an

alignment can minimize the impact of ties, though in instances

where there are many very closely related sequences such as in the

case of tuna, ties can still be problematic [86]. Furthermore,

bootstrapping combined with neighbor-joining tree-building has

been shown to yield artificially high values of support where there

are none, a problem that can be avoided by using parsimony

jackknifing which is also computationally more efficient [85].

When our queries were paired with our reference sequences, our

consensus tree had weaker bootstrap support than the tree

presented by Ward et al. [49], due to the addition of more

sequences (Figure 3). Even with our liberal identification criteria,

we could only identify 12% of the tuna samples using this method,

rendering it the worst-performing identification method tested

here. Because identification does not hinge on phylogeny [73], and

the information content of such phenetic trees is limited and could

mislead those without much background information, it seems best

to avoid their use.

Contrary to phenetic barcoding, the use of diagnostic characters

has at its core the benefit of being visually meaningful, and better

approximates a real barcode. Hebert et al. [36] note that just 15

nucleotides yield 415 nucleotide combinations, i.e. barcodes.

Distance-based methods reduce the information content of all

nucleotides into a single distance vector [34]. For closely related

taxa such as tuna, this loss of information renders species diagnosis

impossible using the most prevalent identification criteria. The 14

nucleotide sites we selected for our key, however, allow us to

differentiate all individuals. Small sequencing errors or ambiguities

can potentially have an important impact on identification success

under both character-based and phenetic methods. Character

diagnosis, however, has the benefit of being hypothesis driven [30],

and in that light we were able to reject escolar as a tuna, and to

recognize the aberrant sequences downloaded from GenBank.

When tested with additional samples, characters that are critical

for species diagnosis may be revealed to be polymorphic and not

fixed [33] and it is possible that the key we developed will fail to

distinguish species when tested against additional samples. For

example, a sample identified as southern bluefin tuna (JHL555;

CCCCGTATATTGGC) has a novel polymorphism at position 5,

but was still identifiable as it had the species-specific simple pure

CA. While this is a limitation of a character-based approach, the

fact that these hypotheses can be tested and refined, allows for an

objectivity not afforded by distance-based methods. Finally, while

there are many concerns about whether barcoding should inform

Figure 4. Neighbor-joining tree of cox1 sequences using the K2P substitution model. Node support was evaluated with 1000 bootstrap
pseudoreplicates. Nodes with gray and black circles are supported at 50–79% and 80–100%, respectively. NCBI GenBank accession numbers are
included in the taxon label of the reference sequences. The gray clade is composed of escolar sequences.
doi:10.1371/journal.pone.0007866.g004
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taxonomy [87–91], barcodes can be only integrated into

taxonomy by using its lingua franca: diagnostic characters. A more

reciprocal relationship between barcoding and taxonomy could be

facilitated if BOLD adopted a character-based approach and

systematists made an effort to publish diagnostic barcodes

alongside traditional morphological characters [83]. Programs

such as P-Gnome automate the discovery of phylogenetically

informative CAs [71] and have been used successfully to identify

dragonfly [92] and chiton species [93]. A similar program could be

incorporated into BOLD to discover diagnostic characters for

identification, which could catalyze the design of microarrays [94]

and the eventual realization of a handheld barcoder.

Implications for Consumers and Conservation
The immense profitability of the global demand for sushi and

other luxury preparations threatens the long-term persistence of

the most coveted species of tuna. In 2001, global imports of

chilled or fresh Pacific bluefin, northern bluefin, bigeye and

yellowfin tuna was valued at US$935 million [95], while the

southern bluefin tuna fishery alone is currently estimated at

AU$1 billion (ca. US$754 million at the May 2008 currency

conversion rate) [96]. Globally, the stock status for these species

ranges from fully exploited to depleted, and the situation will only

deteriorate further if catches are not rapidly and significantly

reduced [97]. Yet overall demand for sushi is rising [2], despite

the deteriorating status of stocks and a growing number of health

concerns regarding foodborne toxins and parasites[98–101].

Molecular identification serves as an important tool for

conservation [67], consumer advocacy [102], and human health

[103].

DNA barcodes could serve as a valuable routine tool for use by

regulatory agencies concerned with investigating cases of food-

related illness or economic fraud [79]. Our study documents five

cases of escolar being sold under the name ‘‘white tuna’’, ‘‘white

tuna (albacore),’’ and ‘‘super white tuna.’’ Escolar is banned for

sale in Japan and Italy because it contains high levels of wax esters

that can cause considerable gastrointestinal distress [104].

According to Shadbolt et al. [105] ‘‘symptoms range from mild

and rapid passage of oily yellow or orange droplets, to severe

diarrhea with nausea and vomiting. The milder symptoms have

been referred to as keriorrhea [i.e. flow of wax in Greek]’’. While it is

not illegal to sell escolar in the US, and this is not an unambiguous

case of economic fraud, the potential consequences of this

mislabeling are clearly troubling.

Because all tuna species may be sold under the FDA market

name ‘‘tuna,’’ it is also legally tenuous to define substitutions as

fraud under existing U.S. regulations. While the majority of

bluefin end up as sushi or sashimi in the luxury market, they

compose only about 1% of the volume of the principal market

species of tuna caught [106]. Bigeye and yellowfin tuna, and to a

lesser extent albacore, are also widely consumed as sushi [95]. Of

these, albacore that has a whiter flesh is the least substitutable

[107]. The fat content of the species typically sold as maguro or

‘‘tuna’’ sushi influences their desirability: bluefin can have up to

15% w/w fat content, bigeye 8%, and yellowfin tuna 2%, though

the fat content of species can overlap [108]. The price-to-mass

ratio for bluefin, bigeye, and yellowfin tuna based on 2007 US

import statistics is 2.4:1:1 [13]. In our samples, those that were

identified as bluefin using DNA barcodes were significantly more

expensive than reflecting the disparity in import value. This all

suggests that the FDA should adopt the market name of bluefin

tuna to protect consumers against economic fraud. In our survey,

four-fifths (79%) of the menu listings gave no indication of what

species was being served. When the chef or wait-staff were asked,

32% of the species descriptions were wrong, while 9% of the

descriptions were uninformative. Nine of the 22 samples described

by restaurants as bluefin, were identified as a different species.

Because the generic description of tuna is what customers are

accustomed to, it is unlikely that the majority of the failed

descriptions were motivated by outright deceit, particularly in

instances when the wait-staff –not chef– were relied upon for

clarification. From a consumer standpoint it is perhaps reassuring

that all 8 of the samples listed in menus as bluefin are identified as

such. Fourteen samples from our survey, however, were identified

as bluefin tuna without being indicated as such on the menus, thus

giving cause for concern given their imperiled status. The only way

for consumers to positively avoid consuming bluefin is abstinence

from tuna sushi if the verbal confirmations we found is

representative.

At a single upscale restaurant we documented the substitution of

bluefin for an order of ‘‘fatty tuna,’’ ‘‘medium tuna,’’ and ‘‘tuna,’’

all of which were authoritatively confirmed by the maı̂tre d’hôtel

as bigeye tuna. This economically counterintuitive result may have

occurred because during the time of purchase an exposé by

Greenpeace using DNA identification revealed that the Michelin-

starred sushi chain Nobu was serving bluefin at three of its London

restaurants without informing its customers, and this prompted

considerable press coverage and public uproar. As a result, Nobu

now lists bluefin on the menus [109] at two of its London

restaurants (out of 19 franchises worldwide). Nobu (NYC) was

included in our survey and the pieces they sold as bigeye tuna were

confirmed as such by our analysis.

At the 2008 ICCAT meeting, the World Wildlife Foundation

presented a petition to officials with nearly16000 consumer

signatures calling for the boycott of Mediterranean bluefin

[110]. While the gesture did not sway ICATT, a widespread

boycott of establishments that do not accurately designate the

species they serve could prod restaurants to follow Nobu’s lead. A

boycott successfully catalyzed industry reform with dolphin-safe

tuna [111], and perhaps could also cultivate a movement towards

bluefin-safe tuna [112].

Both northern and southern bluefin tuna require a level of

regulatory urgency unlikely to be met by a consumer movement,

necessitating trade restrictions. The history of the two fisheries [59]

mirror each other to such an extent that it seems improbable that

status quo management for both species will reverse their

continued decline. Like the western population of northern bluefin

tuna, southern bluefin tuna catches peaked in the 1960s and then

collapsed to their present state, whereas 2008 spawning stock

biomass was only 10% of pre-exploitation estimates [113]. As with

the formation of ICCAT, the collapse spurred concerned nations

to form the Commission for the Conservation of southern bluefin

tuna (CCSBT) and by 1996 the southern bluefin tuna was declared

critically endangered [114]. Like ICCAT, CCSBT admits that,

given ‘‘estimates of depletion of the spawning stock biomass…the

CCSBT has not been successful in managing SBT’’ [115] but

continues to ignore the recommendations of its own scientists, and

does not adequately enforce quotas that have been flouted

egregiously [116]. As shortsighted economic interests derailed a

motion to list northern bluefin tuna on CITES in 1991 [117], the

same occurred for southern bluefin tuna in 1999 [118]. Unlike

southern bluefin tuna, however, northern bluefin tuna populations

have yet to collapse globally.

Our research demonstrates that the technical requirements for

CITES listing can be met, and we support the nomination of

northern bluefin tuna to the Annex I list of threatened species in

order to obviate a fate that seems destined to repeat that of the

southern bluefin tuna.
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Supporting Information

Document S1 FastA file with all cox1 sequences produced from

this study.

Found at: doi:10.1371/journal.pone.0007866.s001 (0.04 MB

TXT)

Figure S1 Alignment comprising all publicly available sequence

records available for blackfin (Thunnus atlanticus) and bigeye tuna

(T. obesus) in GenBank and the Barcode of Life Database.

Sequence DQ835863.1 appears to be either a case of introgression

or a data accession error.

Found at: doi:10.1371/journal.pone.0007866.s002 (4.19 MB

PNG)

Figure S2 Neighbor-joining tree using the K2P substitution

model built in BOLD-IDS using all publicly available Thunnus cox1

sequences. Note that yellowfin tuna (T. albacares) is polyphyletic.

Found at: doi:10.1371/journal.pone.0007866.s003 (0.02 MB

PDF)
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