In Citrus and Its Health

Authors: Sophia Baradarian, Chaya Biderman, Adi Nissanian, Bruriah Sloan
Mentor: Mrs. Biderman
Yeshiva University, High School for Girls

Abstract

Grapefruits and grapefruit juice possess an enzyme that produces potentially dangerous effects when consumed with specific medications. Therefore, it is possible that citrus fruits closely related to the grapefruit could cause similar reactions. In order to determine which fruits may be candidates for further research on their effects on medicine, we performed genetic tests to look for similarities between the grapefruit and five other citrus fruits. In this experiment, the citrus fruits bar coded using chloroplast DNA were grapefruit, tangerine, lemon, orange, and pomelo. After removing the outer skin of these five citrus fruits, we extracted their chloroplasts. The results yielded that the genome of pomelos was very similar to that of the grapefruit, closely followed by the orange and the tangerine. The lemon and the pomelo were the furthest from the grapefruit and would not be the prime candidate for further research. Given that there is only a small number of differences between these citrus fruits and the grapefruit, there is a likelihood that these fruits also affect medications. To investigate this new hypothesis, further investigation can be done on the enzymes of these citrus. In New York, it is common to consume at least one type of citrus, and often more, each day. Therefore, it is critical to conduct further inquiry so as to prevent dangerous consumption of certain citrus fruits with incompatible medication.

Introduction

New York City is home to a variety of citruses, one of which is the grapefruit. Research has shown that grapefruits can help lower cholesterol levels, diminish high blood pressure, strengthen one’s immune system, and even help prevent cancer. However, multiple instances in which complications have occurred when individuals consumed grapefruit juice while taking certain medications have been noted. In some cases, these complications turned out to be fatal. Grapefruit juice has been shown to negatively impact the effects of certain drugs on the body. In many cases, the effect is an increase in heart rate, even if there is no underlying heart disease present in the individual. Grapefruit juice has been shown to negatively impact the effects of certain drugs on the body. Thus, we suggest that the specific mechanism of suppression of grapefruit juice on these cytochrome proteins be studied in detail.

Materials & Methods

Our group obtained a few of the commonly-utilized citrus fruits in New York from ethnic food markets and from Aaron’s Kissema Farm in Queens. We documented the appearance of our various specimens by taking pictures in order to record their visible, or “phenotypic” attributes. Using a blade or scalpel, we cut small samples from each fruit (10-20 mg) in order to collect its chloroplasts, which are necessary to our experiment. We labeled and stored the collected tissues of the various citrus fruits in a cooler for preservation of the tissues, and in order to protect the tissues from potentially damaging influences present in the environment. Next, we added 300 µL of lysis solution to each tube, and crushed each of the samples with a pestle for at least two minutes. We heated the tubes at 65 degrees Celsius for ten minutes. We then placed the tubes in a balanced centrifuge and transferred 150 µL of the supernatant to a fresh tube. In order to separate nucleic acids from the extraction solution, 3 µL of silica resin will be added to the tube and mixed well by pipetting up and down. The tubes were then incubated at 57 degrees Celsius for five minutes. Afterward, the tubes were centrifuged 30 seconds at maximum speed. After pouring out the supernatant, we added 500 µL of wash buffer to the pellet and resuspended the silica by pipetting up and down. This step will remove contaminants from the sample while the DNA of the chloroplast will remain bound to the silica. We will then centrifuge the tube at maximum speed for 30 seconds. Once again, we poured out the supernatant and add 500 µL of wash buffer to the pellet and resuspended the silica by pipetting up and down. The tubes will then be placed in a balanced centrifuge for 30 seconds. The supernatant will be poured out, and the remaining supernatant was removed using a micropipette with a fresh tip. To elute the DNA from the silica, we added 100 µL of distilled water to the pellet and mixed well by pipetting. The tubes were incubated at 57 degrees Celsius for five minutes. We then centrifuged the tubes for 30 seconds to pellet the silica resin. Since our DNA was now in the supernatant, we transferred 50 µL of the supernatant to a fresh tube while being very careful not to disturb the pellet while transferring the samples. We stored the tubes on ice until we are ready to pipette 2 µL from each sample, which we will put into the PCR tubes. Once this was completed, we mixed the samples with loading dye and loaded them into a gel electrophoresis. We ran the gel and compared the samples to ensure proper DNA of the chloroplast isolation. Lastly, we sent off the samples to be sequenced. Once all the data had been collected we were able to make our conclusions and discuss possible further research.

Results

As we expected, many of the citrus fruits that we sequenced possessed few differences to the grapefruit. For the pomelo, we observed a total of one difference when the sequenced chloroplast DNA of the pomelo was compared to that of the grapefruit. When comparing the DNA sequences of the orange and the grapefruit, we observed two differences. In addition, when we compared the DNA sequence of the grapefruit and the tangerine, we also observed two differences in the sequenced chloroplast DNA of the two citrus. Interestingly, we also found a number of other citrus fruits common to the New York region that showed many similarities to the grapefruit as well. Such citrus fruits include the Kaffir lime and kumquats. Between the Kaffir lime and the grapefruit, we found a total of two chloroplast DNA discrepancies. Between the kumquat and the grapefruit, however, we observed a total of zero differences in the sequenced DNA of the two fruits. Between the grapefruit and the lemon, however, we found a significant number of differences that were not seen among other fruits and the grapefruit. When we compared the grapefruit’s sequenced chloroplast DNA to that of the lemon, we detected a total of six discrepancies between the two citrus. Therefore, we may conclude that the lemon possessed the largest number of differences to the grapefruit among the citrus fruits that were compared to the grapefruit. Images of our gel electrophorosis results, as well as a phylogenetic tree of our results are pictured below:

Discussion

Through our DNA sequencing, we found that there were quite a few citrus fruits that were genetically similar to the grapefruit. The pomelo was the citrus fruit that shared one difference with the most closely-related citrus to the grapefruit. However, the orange and the tangerine were also quite similar to the grapefruit, in terms of their chloroplast DNA sequences. Lastly, we discovered that the lemon is the least related to the grapefruit, as it has the most differences in its chloroplast DNA, when compared to the grapefruit.

With the data we collected, there is reason to conduct further research to see if certain citrus fruits such as the pomelo, the orange, and the tangerine, produce similar effects as the grapefruit when combined with certain medications. Our results are significant because, it is a widely-known fact that grapefruit, when combined with certain medications, produces certain enzymes that can be harmful to patients, and in some cases, even fatal. Thus, it is crucial to determine whether the ingestion of certain citrus other than grapefruits, is safe along with the consumption of certain medication.

While our hypothesis was proven to be fairly accurate, we did not expect the lemon to be so different in comparison to the other citrus we tested. In total, we found six discrepancies between the sequenced chloroplast DNA of the lemon and that of the grapefruit. In addition, we found the DNA extraction process to be a bit difficult, due to the fact that we were working with very fleshy fruits. The pulp in each of these citrus made the DNA extraction process more difficult; thus, any unclear or incomplete results may be attributed to errors made in the initial DNA extraction process.

In the future, we would like to conduct further research involving the presence of the cytochrome proteins known as CYP3A4, the activity of which grapefruit juice has been known to suppress. These proteins are crucial to the elimination of metabolic wastes and other toxins from the body. If the proper function of the cytochrome proteins is disrupted, the potential buildup of a drug or toxin in the bloodstream may occur, causing harm to the human body. Thus, we suggest that the specific mechanism of suppression of grapefruit juice on these cytochrome proteins be studied in detail.

References

“Funded by the Thompson Family Foundation.”

Acknowledgements

Thank you to Mrs. Biderman and Mrs. Fried for guiding us through the hard but fulfilling process of this experiment!