Problem Research Goals Research Basis for Proposed Methodology

Global temperatures have increased by 1.3°C while water ® Employ machine learning (ML) to identify PDP based protocol used to identify human footprints effects on animal
temperatures in the Long Island region have increased by variables of prevalence associated with extinction (Ramirez-Delgado et al., 2022)

0.03°C (Rice 2014). mosquito distribution and prevalence. Machine learning to identify variables for mosquito prevalence — Lee et

Mosquitoes in general have been found to thrive in warmer al. (2022) landscape and meteorological data within Seoul; Chen et al.

Use Partial Dependence Plots (PDP) which . . _ e .
(2019) socioeconomic variables within Baltimore

climates. .
show non-linear dependence between a

Young et al. (2022) —identified landscape heterogeneity as a main
variable for increase in Aedes aegypti specifically

Aedes albopictus, the fifth most prevalent mosquito it is certain input variable and the response within

known for contracting Zika Virus and other mosquito-borne the dependent variable.

viruses (Bajwa 2018). Use of ArcGIS and geographical services for landscape heterogeneity —
(Murwira & Skidmore 2005)
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Methods — Collection and Processing of Sample Metadata and Satellite Band Data
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Figure 1. Key Variables Operationalized in the Study. The researcher decided to conduct a data science project that would apply sample data collected from previous Barcode Long Island
projects along with data in GenBank. Mosquito species served as individual dummy variables (Aedes albopictus, Aedes aegypti, and Culex pipiens). Temperature and elevation were interval data B - e
and derived using the coordinates provided for the sample by the BLI Sample Database and GenBank, Finally, landscape heterogeneity was calculated as a percentage through the use of terrain
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classification of LandSat 8 satellite data using the Semiautomatic Classification Plugin of QGIS. The final data analysis involved the creation of decision tree classification models and partial Figure 2. Satellite Data Preprocessing for Training Inputs. Following the protocol of GeolLabs and the SCP Figure 3. LandSat 8 Band Data and Composites. Following the protocol of GeolLabs and the SCP documentation, Landsat 8 data were imported into QGIS for
dependence plots with each individual mosquito dummy variable being the outcome variable and the remaining variables serving as the predictor variables. documentation, Landsat 8 data were imported into QGIS for preprocessing using the Semiautomatic Classification ~ preprocessing using the Semiautomatic Classification Plugin (SCP). Landsat data took the forms of different bands [1], each specific to a wavelength of light. Using SCP,
Plugin (SCP). Landsat data took the forms of different bands, each specific to a wavelength of light. Bands were bands were clipped and modified for reflectance. The appearance of the resulting composite layer could be changed by selecting which bands formed the composite [2].
clipped and modified for reflectance. Shown above is a false-color composite (RGB 5-4-3) image of Sample 1 The researcher explored different band compositions in order to identify the combination that best showed contrasts between different terrain features. Once the desired
(Florida). SCP enables unsupervised classification of regions of interest, which were manually selected by the user as band composition was achieved, SCP enabled the classification of regions of interest, which were manually selected by the user as macroclasses and classes. Figure 1
Table 1 macroclasses and classes. and 2 are courtesy of GeolLabs on YouTube (https://www.youtube.com/watch?v=HKNS-wsc7l0).
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Species Coordinates Date Collected Temperature Elevation Landscape '
(Latitude, Longitude) (year-month-day) (Fahrenheit) (Feet) Heterogeneity
Aedes glhooiclius 30.630, -81.610 2021-09-29 75.08 28
Aedes alhoRictiis 40.869, -73.585 2022-10-05 56.77 217
Aedes albopictus 1.401, 110.364 2019-09-27 84.00 68.90
Aedes glhopictus 15.086, -92.210 2020-09-12 77.00 4379.92
Aedes glhopictis 42.406, 18.641 2019-02-09 4363 679.13
Aedes aeqypli 40.865, -73.598 2023-01-17 4260 123
Aedes aeqypli 40.953, -72.904 2019-12-20 26.33 118
Aedes aeqypli 10.75, 78.69 2018-12-05 84.00 29528
Aedes aeqgypli -3.934, 39.569 2016-12-05 82.00 48228
Aedes aeqgyptli 33.03, 73.594 2016-10-24 82.00 908.79
Culex Rigens 40.641, -73.968 2017-10-01 60.40 34
Culex Ripiens 40.864, -73.597 2023-01-04 53.79 131
Culex RIRERS 4286, -2.639 2019-05-01 79.00 3733.60
Culex RRIeas 42 436, -2.597 2016-08-24 79.00 1525.59
Culex piiens 51.374, 0.791 2014-07-16 58.51 28543 A ¥ Tl ’ i‘
3 .o -1,: o. ‘. - by - i
Table 1. Mosquito Samples and Metadata Collected from Barcode LI Database and GenBank. | first identified mosquito specimens published to the Barcode Long Island Database and Figure 4. Composite Band Layers and the Progression to Landscape Classification. As described in Fig 2, different combinations of three satellite image bands yield different composite images of a location. Image 1 is a combination of the green, blue, and coastal wavelength bands,
GenBank. For each sample, metadata was collected in the form of the coordinates (latitude, longitude) and date of collection. Coordinates were inputted into Weather Underground yielding a cold-intensity composite. Image 2 combines near-infrared, red, and green bands to create a color infrared composite that accentuates vegetation. Image 3 shows a composite of near-infrared, shortwave infrared, and green bands. This composite yielded the best contrast of urban
(wunderground.com) to derive the historic temperature at the time of sampling. Coordinates were also inputted into the website CalcMaps (calcmaps.com) to derive the elevation of the sample structures, vegetation, and barren earth and was the composite selected for image classification. Using SCP, urban structures, vegetation, and barren earth were designated as the different classes and regions of interest comprising pixels of each class were selected. The resulting output is
location. The column labeled ‘Landscape Heterogeneity’ (highlighted in yellow required the processing of LandSat8 data from the Earth Explorer database through the QGIS software. shown in Image 4, with urban structures appearing as gray, barren earth as orange, and vegetation as green. Following this terrain classification, a classification report yielded the respective percentages of total pixels for each class which populated the final column of the dataframe (Table 1).

Results — Decision Tree Classification and Partial Dependence Plots
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https://earthexplorer.usgs.gov/
https://www.youtube.com/watch?v=HKNS-wsc7lo&t=908s
https://semiautomaticclassificationmanual.readthedocs.io/en/latest/tutorial_1.html
https://semiautomaticclassificationmanual.readthedocs.io/en/latest/tutorial_1.html
https://www.youtube.com/watch?v=HKNS-wsc7lo&t=908s
https://semiautomaticclassificationmanual.readthedocs.io/en/latest/tutorial_1.html

