Introduction

- •The establishment of coastal salt wetlands helps compensate for the destruction of pre-existing marshes caused by industrial activities such as mining, construction, and excavation (Craft et. al., 2003) •Spartina alterniflora is resistant to flooding, anoxic soils, and high salinities (Mason et. al., 2020)
- •Due to its ability to fuel food webs above and below ground, it functions as a keystone species in many salt marsh ecosystems (Wang, Seliskar & Gallagher, 2003)
- •In the intertidal zone, S. alterniflora is a substantial source of fixed carbon (Bergen et. al., 2000)
- •Spartina alterniflora is negatively affected when high soil pH was combined with high salinity (Li, Shi & Fukuda, 2010)
- •Metabarcoding is used to figure out the microorganisms present in a certain ecosystem (Lafferty & Nigro, 2018)
- •Soil microbes create a link between plant roots and the soil, recycle soil nutrients, decompose organic matter, and react to changes in the

Demultiplex Reads

 Relatively strong positive correlations were observed between air temperature and biodiversity and water temperature and biodiversity showing higher air and water temperatures yield better biodiversity.

soil ecology (Toor & Adnan, 2020)

Research Question

• How are the microbes present in the roots and surrounding environment of Spartina alterniflora in and around a brackish water pond affected by temporal changes?

Hypothesis

- We expect to find species of bacteria from the phyla of: Acidobacteria, Verrucomicrobia, Cyanobacteria, Bacteroidetes, and many from Proteobacteria (alpha-, beta-, gamma-, delta-, epsilon-, zeta-).
- In a study assessing microbial communities in S. alterniflora infiltrated areas, different abundances of these phyla of bacteria were present at different locations. However, in all locations sampled, different variants of Proteobacteria were present (Mavrodi, et. al, 2018). • In another soil microbiome study, unknown phylogenetic sequences were categorized under the phylum of Proteobacteria and were associated with environments that were plant-based and/or aquatic (Lovell, et. al, 2000). • We hypothesized that we will find predominantly bacteria from the phylum, Proteobacteria, since it is the most common bacteria found in soil microbiomes (Spain, et. al, 2009). • If we find high levels of Proteobacteria in soil samples taken, this may be a result of nitrogen fertilization, an abiotic process known to increase organic carbon and nitrogen concentrations while decreasing soil pH; nitrogenous fertilizers can commonly lead to acidification of soil (Dai, et. al, 2018). • Proteobacteria plays roles in both the carbon and nitrogen cycles: they take away pollutants from the environment by utilizing excess nitrogen and carbon for their own sources of energy.

- There was a relatively moderate correlation observed between salinity and biodiversity however the p-value was too large to deem the correlation significant.
- Along with many other temporal variables pH showed relatively little correlation with biodiversity meaning they showed no effect on biodiversity.
- The samples were mainly dominated by Actinobacteria and Alphaproteobacteria.

- There was a large gap between February and July where samples didn't work so changes occurring in those months were not seen Changes were observed in the relative abundance of
- Gammaproteobacteria, Actinobacteria, and BPC102 (Acidobacteria). These bacteria may have relative abundances correlated with changes in variables observed.
- Alpha rarefaction leveled off at 6000 reads. Levelling off indicates that a larger sampling depth will likely still yield the same biodiversity

- This relates to how one of the enduring issues in Long Island coastal waters includes nitrogen pollution (Bortman, 2013).
- It is also important to acknowledge that in more urbanized areas of Long Island, the soil pH is higher than that of rural areas.

- Demultiplex showed a large number of reads for all samples with July through October having a much greater number of reads (~150000-500000) and January and February having much fewer (~20000-60000). This means that the July through October samples have more sound results.
- All samples passed through the DADA2 filter with the majority of reads passing through in each sample meaning the majority was quality DNA.

- Earlier samples were dominated by Gammaproteobacteria while later samples were dominated by Actinobacteria
- There was correlation observed between air temperature and biodiversity, water temperature and diversity, and salinity and biodiversity indicating that higher air and water temperatures yield more biodiversity
- Fairly little correlation between the other variables and biodiversity means they don't cause changes in biodiversity
- This means that people using Spartina in wetland restoration should prioritize growing it in warm temperatures and low salinities over

Methodology

- Samples were collected from the Long Beach High School pond
- The pond has access to Reynold's channel creating different salinity depending on the part of the pond you're in
- Soil was dug out with a shovel and samples were taken from the soil and placed into snap-cap tubes
- Other metadata was taken and recorded on our table (Future slides)
- We ran soil tests to determine pH, phosphorus, nitrogen, and potassium levels
- Extraction was ran using the Qiagen DNeasy powersoil kit
- PCR was ran on the samples
- PCR product was ran through a gel to check for amplification
- Samples were analyzed using the DNA Subway Purple line

other variables.

Experimental Error Sources

- Nitrogen test didn't look like it was working properly
- DNA Degradation was possible due to the DNA being processed long after some samples were taken
- Contamination was possible during the PCR prep causing the DNA to not amplify well
- Nutrient tests aren't precise enough to detect small changes in nutrient levels that may cause changes in biodiversity.

Further Research

 Researching specific bacteria that we noticed changes with to determine their role in the Microbiome to gain more insight into the effect of the temporal changes on the Spartina

Assessing Temporal Variability in the Rhizosphere Microbiome in Spartina alterniflora

Methodology

mage 1:

showing

salinity

differences

locations

and Spartina

mage of the

Highe

PCR Recipe/Protocol

12.5µL PCR MasterMix OF ID WILL

Initial Step: 94°C - 3min

6.5µL Pure Water*
1µL DNA*
5µL Primer
25µL PCR Mix
(Note: Water and MasterMi
are added to a separate tub
and split between the
samples)
*Could be changed for better results

The primers have at their core primers that amplify the V4 region on 16S ribosomal RNA.

Denaturation 94°C - 45s	
<u>Annealing</u> 50°C - 1min	x.
<u>Extension</u> 72ºC - 1.5min	
Final Step: 72°C - 10min 12°C - ∞	

IN STATES

Data

Alpha Rarefaction

Spartina

10.0

DADA2 Stats

									87.93	
Help — • Select All — • AugA				percentage of input passed		SetA-F6	479967	422042		
	sample-id #q2:types	input numenc 1	filtered numeric	filter		SetA-F7	365950	324225	88.6	
📼 🛈 AugB 🚍 🔵 AugC	SetA-F1	233785	189644	81.12		SetA-F8	337620	294134	87.12	

10% -																		
		_																
0%	-yony	-gány	Aug-	- Vatera	Fute	Labo	-Anal	Jari8-	Janc-	-wint	-844	Auto-	-Viol	0.6	-000	-yday	-Diez	Sepc
									5an	nple								

	Time Collected	Latitude	Longitude	Air Temperature (°C)	Water Temperature (°C)	Salinity (ppt) Water Depth (cm)	Depth to Rhizosphere (cm)	Soil pH	Phosphorus (lb/acre)	Potassium (Ib/acre)	Nitrogen (Ib/acre)
January	9:02 AM	40.593529	-73.634294	-5	2	8 unsubmerged	15.24	6.5	0-50	>200	Very trace
February	9:07 AM	40.593557	-73.634274	4.44	5	35 partially submerged	10.16	8	0-50	>200	Very trace
March	9:50 AM	40.593557	-73.634274	10.56	10	34 submerged	10	7	0-50	>200	Very trace
April	9:00 AM	40.593451	-73.634258	10	12	33 unsubmerged	10	8	0-50	>200	Very trace
May	9:00 AM	40.59354	-73.63433	26	20	29 unsubmerged	7	6	0-50	>200	Very trace
June	1:38 PM	40.59354	-73.63434	25	23	11 unsubmerged	13.97	7	0-50	>200	Very trace
July	5:38 PM	40.59355	-73.63436	27.78	25	24 unsubmerged	15	7	50-100	>200	Very trace
August	1:48 PM	40.59351	-73.63435	30.56	25	27 partially submerged	10	8	0-50	>200	Very trace
September	7:11 AM	40.59358	-73.63436	13.33	16	24 partially submerged	23	7	50-100	>200	Very trace
October	7:09 AM	40.59356	-73.63434	8.33	14	13 unsubmerged	10	7	0-50	>200	Very trace
Summary	January 27, 2022		February 28, 2022		March 31,2022	April 28, 2022		May 31, 2022			
High Tide	2:59 AM		6:53 AM		9:02 AM	7:09 AM		9:36 AM			
Low Tide	9:35 AM		1:05 PM		3:02 PM	12:54 PM		3:28 AM			
Weather	3mph winds/fair sky		16 mph winds/clou	dy	13mph winds/mostly clou	dy 22 mph winds/mostly	y cloudy and windy	12 mph winds/pa	rtly cloudy		
Notes:	Pond was frozen at o	collection location	Other collection loo	cation was submerged	Rained earlier that day						
	June 30, 2022		July 31, 2022		August 30, 2022	September 29, 2022		October 28, 2022			
High Tide	11:19 AM		12:05 PM		10:47 AM	10:58 AM		10:37 AM	Table 1	: Table of collect	ed metadata
Low Tide	4:49 PM	Luca -	5:46 PM		4:47 PM	4:34 PM		4:13 AM			
Weather	13 mph winds/mostly	/ cloudy	13 mph winds/part	y cloudy	18 mph winds/partly cloud	dy 14 mph winds/partly	cloudy	14 mph winds/fail	rsky		

1 1 6 6 L

- M

Aver, lencenture