The presence of a freshwater source affecting the biodiversity of Mushrooms

Abstract

Mushrooms are decomposers and many mushrooms provide qualities that are beneficial to mankind. To find the biodiversity of mushrooms in the two areas we collected specimen from each area and then taxonomically and genetically identified them. After taxonomically identifying the mushrooms we found that the nature trail was more biologically diverse because it had eleven different species and the pond had seven different species. To gain more clarity on what the freshwater was doing we found four soil values from the two collection sites. After our findings we have concluded that freshwater decreases the biodiversity of mushrooms, the probable reason for this is the water negatively affecting certain components in the soil towards mushroom growth.

Introduction

Background of Mushrooms

- Mushrooms are fungi
- Mushrooms are decomposers and use their mycelium to get nutrients from dead animals or plants near them
- Mushrooms don't have absolute known habitats
- Many mushrooms contain beneficial qualities for human use
- Mankind has only found 10% of mushrooms on earth

Background of Project

- The two locations of collection for the mushrooms was the area around a freshwater pond and a wooded nature trail

Methods

Collection Procedure:

- Mushroom specimen were located in the two different areas of collection
- Mushrooms where then photographed when still in the ground
- Next the stem of the mushroom is cut or just completely uprooted from the ground
- Once removed from the ground the mushroom is bagged then labeled
- Then the mushrooms are photographed and measured in the lab
- Then the mushrooms are stored in the fridge

Barcode Procedure:

- First the DNA is extracted with the aid of a Chelex agent
- The extracted DNA was then amplified in the ITS gene using PCR
- The PCR tubes was then loaded in a Thermocycler and went through multiple cycles
- The PCR was then confirmed by the process gel electrophoresis
- The PCR was sent out to be sequenced
- After sequenced gene whiz was used to genetically identify the specimen

Amount of Mushroom Species

Google. (n.d.). Mushrooms and other common fungi. Google Books.

https://books.google.com/books?hl=en&lr=&id=3XUc20uoTKEC&oi=fnd&pg=PA3&dq=difference%2Bbetween%2Bnushrooms%2Band%2Bother%20fungi&f=false Gezer, K., Kaygusuz, O., Eyupoglu, V., Surucu, A., & Doker, S. (2015). Determination by ICP/MS of trace metal content in ten edible wild mushrooms from Turkey. Oxidation Communications, 38(1A), 398-407. Hu, D., Cai, L., Chen, H. et al. (2010). Fungal diversity on submerged wood in a tropical stream and an artificial lake. Biodivers Conserv. https://doi.org/10.1007/s10531-010-9927-5 Jahan Pinky, Nusrat, et al. "Edibility detection of mushroom using ensemble methods." International Journal of Image, Graphics and Signal Processing, vol. 11, no. 4, 2019, pp. 55–62, Lindequist, U., Niedermeyer, T. H. J., & Jülich, W.-D. (n.d.). The pharmacological potential of mushrooms. Evidence-Based Complementary and Alternative Medicine. https://www.hindawi.com/journals/ecam/2005/906016/ Patterson, F. W., & Charles, V. K. (1915). Mushrooms and other common fungi (No. 175). US Department of Agriculture. Soil and habitat characteristics of various species of mushroom growing ... (n.d.-b).

https://www.researchgate.net/profile/Kutret-Gezer/publication/291697625_Soil_and_habitat_characteristics_of_various_species_of_mushroom_growing_wild_in_the_Gireniz_Valley_Turkey.pdf T. Demirer*1, B. R ock-Okuyucu2and 1. Ozer. (2005). Effect of different types and doses of nitrogen fertilizers on yield and guality characteristics of mushrooms (Agaricus bisporus (Lange) Sing)cultivated on wheat straw compost. https://www.jarts.info/index.php/jarts/article/view/83/76

William Hanwell, Hayden Shea, Cole Stadler Shoreham-Wading River High School

Map 1. Map of collection sites Photo Credit: Google Maps

Figure 8. Alignment of all genetically identified species

Results			
Species Number	Taxonomical ID	Genetic ID	
1	Shaggy Scalycap/Pholiota squarrosa		
2	Bleeding agaricus/Agaricus brunneofibillosus		
3	Brown Mottlegill/Panaeolina foenisecii		
4	Hen of the woods/Grifola frondosa	Trametes versicolor	
5	Hen of the woods/Grifola frondosa	Trametes versicolor	
6	Scarlet waxcap/Hygrocybe coccinea	Uncultured russula	
7	Chicken of the woods/Laetiporus sulphureus	Trametes versicolor	
8	Chicken of the woods/Laetiporus sulphureus	Trametes versicolor	
9	Jack-o-lantern mushroom/Omphalotus olearius		
10	Molly Maze Polypore/Cerrena unicolor	Trichaptum	
11	Surprise Webcaps/Cortinarius semisanguineus	Tricholoma caligatum	
12	Meadow mushroom/Agaricus campestris	Basidiomycota cortinarius	
13	Mower's mushroom/Panaeolus foenisecii		
14	Molly Maze Polypore/Cerrena unicolor	Stereum fasciatum	
15	Common Yellow Russula/Ochre brittlegill	Russula	
16	Shaggy Scalycap/Pholiota squarrosa	Amanita polypyramis	
17	The sickener/Russula emetica	Albatrellus	
18	Deceiver mushroom/Laccaria laccata	Laccaria trichoderma phora	
19	Shaggy Scalycap/Pholiota squarrosa	Vinarija pseudolonga	
20	Orange milkcap mushroom/Lactarius aurantiacus	Tricholoma caligatum	

Figure 1. Mushroom Specimen: Hen of the Forest Photo Credit: Students

Figure 4. Hen of the forest Photo Credit: Preston Layne

Soil compone			
Potassium			
Nitrogen			
рН			
Phosphorus			
•	From		
•	Nave We ex		
•	health Throu		
•	conclu After		
	fresh		

In conclusion, the nature trail has a bigger biodiversity than the biodiversity of the pond. The reason for this is mostlikeley because of the pond but could also be the amount of trees on the nature making the soil more nutritious for the mushrooms when they die. Even though we could not complete every part of the metadata, we can still determine that the soil is better then the soil of the pond because of the water, but because of the components of the soil so our prediction was correct.

References

CSH Cold Spring Harbor Laboratory DNA LEARNING CENTER

Figure 2. Mushroom Specimen: Molly Maze Polypore Photo Credit: Students

Figure 5. Molly Maze Polypore Photo Credit: Wikidata

Figure 3. Mushroom Specimen: Orange Milk Cap Mushroom Photo Credit: Students

Figure 6. Orange Milk Cap Photo Credit: D'Smith

Metadata			
t	Pond	Nature Trail	
	K2 Adequate	K2 Adequate	
	N4 Surplus	N3 Sufficient	
	6.0	5.5	
	P3 Sufficient		

Discussion

- our Taxonomically and Genetically identified species in both locations we found the Nature trail has a higher biodiversity
- xpected this because we hypothesized that the freshwater would create less hy soil for the mushrooms
- ugh finding our metadata which was four different values in the soil we uded that the soil in the Nature Trail is healthier than the soil by the Pond the values of the soils were found all signs point to the presence of water affecting the soil values negatively towards mushroom biodiversity

Conclusions