The nuclear power plant built in Shoreham, Long Island was completed in 1984 with the intention of providing power to light 500,000 homes, but ultimately it failed. This power plant never truly operated because of mass protests due to rising costs and environmental issues. The Shoreham nuclear power plant was finished in 1984 in hopes to light 500,000 homes, but ultimately it failed. This power plant never truly operated because of mass protests due to rising costs and environmental issues. The original purpose of this research was to analyze the biodiversity of the macroinvertebrates in a creek adjacent to a nuclear power plant. Through DNA barcoding we were able to successfully obtain the barcodes of three of the twenty samples collected. Although we are not able to draw a conclusion on the biodiversity based on just these sequences, it is evident based on the samples we were able to identify visually that the biodiversity of the macroinvertebrates decreases as the distance from the power plant decreases. However, through this process we were able to make the conclusion that it is imperative to look at more than just one gene sequence to successfully identify an organism. We were able to visually identify XMX_006 as a barnacle through our prior knowledge of macroinvertebrates and XMX_007 as a mud snail. However, when we analyzed the DNA sequences of these samples, a 99.17% sequence similarity was shown. Generally we would have utilized that sequence to identify which organism it is but since we are fully utilizing that section to identify which organism it is but since we are fully confident that these two samples are two different organisms it is clear that a single sequence cannot determine the organism. Therefore, simply looking at one gene (COI Gene) is not sufficient to distinguish organisms.

Abstract

The Shoreham nuclear power plant was finished in 1984 in hopes to light 500,000 homes, but ultimately it failed. This power plant never truly operated because of mass protests due to rising costs and environmental issues. The building of Shoreham power plant is believed to have caused immense devastation to the environment and affected factors such as biodiversity and water contamination. Through analysis of macroinvertebrates in this environment, results exemplifying the decrease of biodiversity is believed to be true. Due to the development of a power plant, it is believed that biodiversity increases as distance increases from the power plant.

Introduction

- The nuclear power plant built in Shoreham, Long Island was completed in 1984, this nuclear power plant that was initially sold as a solution for a power-hungry island sparked controversy.
- Many power plants across the nation exhibit influence on the surrounding wildlife.
- Whilst wildlife may be affected throughout the operation of the nuclear power plant, majority of the influence derives from building the plant.
- Building this power plant released such an immense amount of radiation because of the uranium that was mined for fuel.
- Although the fuel was never used throughout operation, the presence of uranium caused an output of radiation.
- The process of mining and refining the uranium ore and producing the reactor fuel, requires a large supply of energy (Weisser, 2007).
- When building a power plant, mass amounts of carbon dioxide are emitted during construction. This is because nuclear power plants use uranium as fuel. The presence of uranium can cause a copious amount of radiation because of the uranium that was mined for fuel.
- It is hypothesized that the biodiversity of the macro invertebrates is significantly decreased the closer to the nuclear power plant.

Results

Results are presumed to be that as distance increases from the power plant, the biodiversity of macroinvertebrates increases as well. Additionally, the cause of the vast curvatures within the rivers and land, are hypothesized to be a direct cause by the building of the nuclear power plant.

Discussion

The original purpose of this research was to analyze the biodiversity of the macroinvertebrates in a creek adjacent to a nuclear power plant. Through DNA barcoding we were able to successfully obtain the barcodes of three of the twenty samples collected. Although we are not able to draw a conclusion on the biodiversity based on just these sequences, it is evident based on the samples we were able to identify visually that the biodiversity of the macroinvertebrates decreases as the distance from the power plant decreases. However, through this process we were able to make the conclusion that it is imperative to look at more than just one gene sequence to successfully identify an organism. We were able to visually identify XMX_006 as a barnacle through our prior knowledge of macroinvertebrates and XMX_007 as a mud snail. However, when we analyzed the DNA sequences of these samples, a 99.17% sequence similarity was shown. Generally we would have utilized that sequence to identify which organism it is but since we are fully confident that these two samples are two different organisms it is clear that a single sequence cannot determine the organism. Therefore, simply looking at one gene (COI Gene) is not sufficient to distinguish organisms.

Materials and Methods

- **Collecting**
- **Testing the invertebrates**
- **DNA Isolation**
- **DNALC**
- **BLAST**

Acknowledgements

We’d like to give a special thank you to Cold Spring Harbor Laboratory DNALC for sponsoring and supporting this project. Additionally, thank you to Ms. Lackermann and the William Floyd Administrators. Lastly, we’d like to thank Mrs. Hernandez in her countless efforts in helping us throughout this research project.