Mushroom Biodiversity in Rockefeller State Park Preserve in Pleasantville, NY

Ava Alvarez¹, Isabella Avila¹, Christina Huerta-Stylianou¹, Anjali Shafiee¹ Mentors: Dr. Oxana Litvine¹, Mrs. Rebecca Beaton¹
1 The Ursuline School, 1354 North Ave, New Rochelle, NY 10804

Abstract

Mushrooms play a vital role in an ecosystem as they break down dead plant and animal material and they return nutrients back into the food web. The aim of the study was to evaluate the biodiversity of mushrooms in Rockefeller State Park Preserve in Westchester County, NY. The use of field guides^{12, 13}, an online network for biodiversity information called iNaturalist, and DNA Barcoding aided us in the identification of mushroom specimens. The 26 samples we collected were first identified using iNaturalist and a mushroom field guide. Then DNA barcoding was employed to compare and clarify the preliminary identifications. We identified 10 species of fungi, 8 of them mushrooms that we collected and 2 of them microscopic

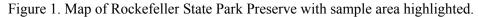
Introduction

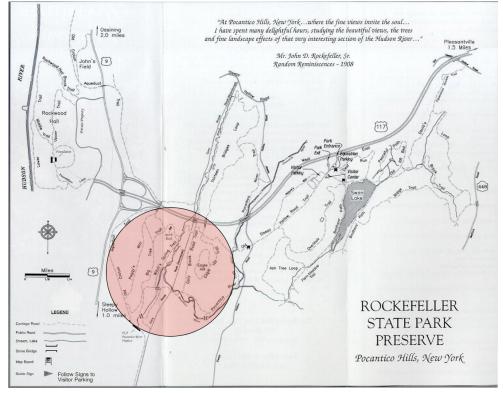
Mushrooms are a type of fungi that are commonly found in the order of Agaricales in the phylum of Basidiomycota.¹ They come in multiple shapes and contain spores, leading mushrooms to be classified as sporophores. Unlike many other organisms, mushrooms are saprophytes which means that they obtain their nutrients from nonliving organic matter.² There is an abundance and wide variety of mushrooms as there are currently over 14,000 known species of mushrooms.⁵

Mushrooms play a vital role in an ecosystem. They play a key role in breaking down dead plant and animal material and returning nutrients back into the food web. Mushrooms recycle carbon from litter and dead plant material and return it to provide nutrients for the soil which allows plants to grow.⁴

It is important to research the biodiversity of mushrooms because they contribute to the ecosystem while aiding in providing nutrients for organisms and the habitat of the ecosystem. Many organisms rely on certain species of mushrooms to survive. Some mushrooms tend to absorb pollutants and as a result, become toxic and detrimental to other organisms.⁶ On the other hand, other species of mushrooms can remedy contaminated soils ultimately helping the ecosystem survive, despite environmental conditions.⁷

Rockefeller State Park Preserve is a state park in Mount Pleasant, New York with a high diversity of species over the vast 1,775 acres of land.¹⁰


In preparation for our project, we researched a full list of mushroom species in Rockefeller State Park Preserve, and we didn't find one. Hence, the goal of our project is to evaluate the biodiversity of mushrooms in Rockefeller State Park Preserve and come up with a list of species, especially those which thrive during April. The use of field guides^{12,13}, iNaturalist, and DNA Barcoding will aid us in the identification of mushroom species.


Materials and Methods

We collected 26 samples of various mushrooms from Rockefeller State Park. Mushroom samples were collected from multiple trails around the Eagle Hill area. Specifically, samples were collected from south of Highway 117 and north of the Pocantico River trail, as well as west

of Sleepy Hollow Road and east of Old Croton Aqueduct trail as shown in Figure 1.¹⁴ We chose this area to sample because it is mostly marshland, which would most likely contain more dead matter than the rest of the preserve.

We used Rapid DNA extraction as described in UBP resource materials.¹⁵ The isolated DNA sample was amplified using the ITS1F and ITS4 primers using the Ready-to-Go PCR Bead amplification technique.¹⁵ After PCR, we stored the amplified DNA on ice or at -20° C until we were ready to analyze the PCR Products by gel electrophoresis. We conducted gel electrophoresis according to a standard procedure described in UBP resource materials.¹⁵ Next, we sent our DNA samples to sequence by biotechnological company Genewitz. Upon receiving our DNA sequence results we used (1) DNA subway procedure and (2) direct BLAST analysis to identify our species.¹⁶

Results

Of the 26 samples of mushrooms collected from the Rockefeller State Park Preserve, 4 of the specimens didn't yield DNA sequence which could be DNA barcoded. All 26 samples were identified using iNaturalist and field guides, 25 of the samples had successful DNA extraction, and 22 of the samples were DNA barcoded with a high quality, meaning that the error rate for the sequences was less than 1%. The samples were first identified using iNaturalist and a mushroom field guide, and lastly DNA barcoding. Using the method of iNaturalist, 16 different species were found to be present in the mushroom samples. From the identification of mushrooms using a field guide 14 different species were identified, and DNA barcoding showed 8 different species in the 21 samples that were successfully DNA barcoded.

Sample	iNatural ist	Field Guides	DNA Barcoding By DNA subway	DNA barcoding by direct BLAST analysis	Notes	Link to iNaturalist
KRE_0 01	Trametes pubescen s/ Bracket Fungi	Ganoderma applanatum/Ar tist's Bracket	Stereum fasciatum/False Turkey-Tail	Stereum fasciatum (percent identity 98.65%)	All three species, Stereum fasciatum, Ganoderma applanatum, and Trametes pubescens are very similar when it comes to their shape and color. Stereum fasciatum are found around North America. Stereum fasciatum are also very commonly found in the Westchester, New York area.	https://www.inatur alist.org/observatio ns/153712657
KRE_0 02	Trametes versicolo r/ Turkey- Tail	<i>Trametes</i> <i>versicolor</i> /Turk ey-Tail	Phaeocalicium sp.	<i>Phaeocalicium</i> <i>sp.</i> (percent identity 99.22%)	Phaeocalicium is a genus of lichen-forming fungi in the family Mycocaliciace ae. Phaeocalicium sp. is found on a variety of fungi but most commonly Trametes	https://www.inatur alist.org/observatio ns/153713795

Table 1: Isabella Avila

					<i>versicolor</i> (Turkey-Tail). The lichen picked up the primer used during DNA barcoding, allowing for it to be identified.	
KRE_0 03	<i>Trametes gibbosa/</i> Lumpy Bracket	<i>Daedalea quercina</i> /Oak Mazegill	No DNA sequence is available for analysis.	No DNA sequence is available for analysis.	<i>Trametes</i> gibbosa and <i>Daedalea</i> quercina are both polypore mushrooms.	https://www.inatur alist.org/observatio ns/153729681
KRE_0 04	Cerrena unicolor/ Mossy Maze Polypore	Trichaptum biforme/Violet- Toothed Polypore	<i>Trametes</i> <i>gibbosa</i> /Lumpy Bracket	Trametes gibbosa (Percent identity 94.12%)	<i>Cerrena</i> <i>unicolor</i> , <i>trichaptum</i> <i>biforme</i> , and <i>Trametes</i> <i>gibbosa</i> are very similar in shape and color, as well as the places they grow, decaying wood. <i>Trametes</i> <i>gibbosa</i> are found across North America. <i>Trametes</i> <i>gibbosa</i> can also be found in the Westchester, New York area.	https://www.inatur alist.org/observatio ns/153729719
KRE_0 05	Stereum ostrea/	<i>Stereum</i> ostrea/False	Trichaptum biforme/	Trichaptum biforme/	Stereum ostrea and	https://www.inatur alist.org/observatio

	False Turkey- Tail	Turkey-Tail	Violet-Toothed Polypore	(Percent identity 99.40%)	<i>Trichaptum</i> <i>biforme</i> are alike in shape and size. <i>Trichaptum</i> <i>biforme</i> is mostly found on decaying hardwoods.	<u>ns/153729778</u>
KRE_0 06	Fomitop sidaceae / Bracket Polypore s	Stereum complicatum/C rowded Parchment	<i>Trametes</i> gibbosa/Lumpy Bracket	Trametes gibbosa (Percent identity 99.50%)	Fomitop sidaceae, stereum complicatum, and Trametes gibbosa are all in the family of polypores. Trametes gibbosa is found across North America and the Westchester, New York area.	https://www.inatur alist.org/observatio ns/153729847
KRE_0 07	<i>Cerrena unicolor/</i> Mossy Maze Polypore	<i>Trametes</i> <i>betulina</i> /Gilled polypore	DNA subway does not give any results. Poor DNA sequence quality	BLAST does not give any results. Poor DNA sequence quality	<i>Cerrena</i> <i>unicolor</i> and <i>Trametes</i> <i>betulina</i> are found across North America. Both species are similar in size, shape, and color. They are related to each other as they are both polypores.	https://www.inatur alist.org/observatio ns/153729889
KRE_0 08	<i>Trametes gibbosa/</i> Lumpy	<i>Daedalea quercina</i> /Oak Mazegill	<i>Trametes</i> <i>versicolor/</i> Turkey-Tail	<i>Trametes</i> <i>versicolor</i> (Percent	Trametes gibbosa, Daedalea	https://www.inatur alist.org/observatio ns/153729921

Bracket	identity 99.26%)	<i>quercina,</i> and <i>Trametes</i> <i>versicolor</i> are all common polypores and found across North America.	
---------	---------------------	--	--

Table 2 - Christina H-S

Sample	iNaturalist	Field Guides	DNA Barcoding by DNA subway	DNA barcoding by direct BLAST analysis	Notes	Link to iNaturalist
KRE_00 9	Stereum ostrea/ False Turkey-Tail	Stereum ostrea/ False Turkey-Tail	Stereum sp.	Stereum lobatum (Percent identity 96.72%)	Stereum lobatum is very common in the Westchester, New York area. They are found around North America. False Turkey-Tail is an imitation species that is very similar in appearance to the Turkey-Tail Fungi. This can explain why the field guides and iNaturalist incorrectly classified the sample.	<u>False</u> <u>Turkey-Tail</u>
KRE_01	Stereum complicatum / Crowded Parchment	Stereum complicatum/ Crowded Parchment	Stereum complicatum / Crowded Parchment	Stereum complicatum (Percent identity 88.60%)	Stereum complicatum is very common in the Westchester, New York area. They are found around North America.	Crowded Parchment
KRE_01 1	Gloeoporus dichrous/ Bicolored	<i>Gloeoporus dichrous/</i> Bicolored	<i>Trametes</i> <i>versicolor/</i> Turkey-Tail	<i>Trametes</i> <i>versicolor</i> (Percent	<i>Trametes versicolor</i> is very common in the Westchester,	Bicolored Bracket

	Bracket	Bracket		identity 90.46%)	New York area. They are found around North America. <i>Gloeoporus dichrous</i> and <i>Trametes</i> <i>versicolor</i> are very similar in color and appearance, which may have been attributed to the incorrect classification on iNaturalist and by field guides.	
KRE_01 2	Genus <i>Sarcophsyca</i> Elf Cups	Sarcophsyca austriaca/ Scarlet Elf Cups	Sarcophsyca austriaca/ Scarlet Elf Cups	Sarcophsyca austriaca (Percent identity 99.82%)	Scarlet Elf Cups are local to Westchester, New York area. They are found around North America.	<u>Elf Cups</u>
KRE_01 3	<i>Trametes</i> <i>betulina/</i> Gilled Polypore	<i>Trametes</i> <i>betulina/</i> Gilled Polypore	<i>Lenzites</i> <i>betulinus/</i> Gilled Polypore	<i>Lenzites</i> <i>betulinus</i> (Percent identity 100.00%)	<i>Lenzites betulinus</i> is the former name of <i>Trametes betulina</i> . <i>Lenzites betulinus</i> is local to Westchester, New York area. They are found around North America.	<u>Gilled</u> <u>Polypore</u>
KRE_01 4	<i>Trametes</i> <i>versicolor/</i> Turkey-Tail	<i>Trametes</i> <i>versicolor/</i> Tur key-Tail	<i>Stereum</i> <i>lobatum/</i> False Turkey-Tail	Stereum lobatum (Percent identity 95.69%)	False Turkey-Tail is an imitation species that is very similar in appearance to the Turkey-Tail Fungi. This can explain why the field guides and iNaturalist incorrectly classified the sample. Stereum lobatum is local to Westchester, New York area.	<u>Trametes</u> <u>Versicolor</u>

					They are found around North America.	
KRE_01 5	<i>Ischnoderma</i> <i>resinosum/</i> Resinous Polypore	Ischnoderma resinosum/ Resinuous Polypore	Trametes versicolor/ Turkey-Tail	Trametes versicolor (Percent identity 99.01%)	Ischnoderma resinosum and Trametes versicolor are very similar in color and appearance, which may have contributed to the incorrect classification on iNaturalist and by field guides. Trametes versicolor is one of the most common mushrooms in North America and grows all over the world.	Resinous Polypore
KRE_01 6	Punctularia strigosozona ta/ White-rot Fungus	<i>Punctularia</i> <i>strigosozonat</i> <i>a</i> / White-rot Fungus	Stereum ostrea/ False Turkey-Tail	Stereum ostrea (Percent identity 99.49%)	Punctularia strigosozonata and Stereum ostrea share similar colors which may make them appear like each other. Stereum ostrea is local to Westchester, New York area. They are found around North America.	White-Rot Fungus
KRE_01 7	<i>Stereum</i> ostrea/ False Turkey-Tail	<i>Stereum</i> ostrea/ False Turkey-Tail	<i>Stereum lobatum/</i> False Turkey-Tail	Stereum lobatum (Percent identity 97.11%)	Stereum lobatum and Stereum ostrea are two different names for the same species. They are both False Turkey-Tail. Stereum lobatum is local to Westchester,	<u>False</u> <u>Turkey-Tail</u>

				New York area. They are found around North America.	
KRE_01 8	Punctularia strigosozona ta/ White-rot Fungus	Stereum ostrea/ False Turkey-Tail	Stereum ostrea (Percent identity 99.17%)	Punctularia strigosozonata and Stereum ostrea share similar colors which may make them appear like each other. Stereum ostrea is local to Westchester, New York area. They are found around North America.	White-Rot Fungus

Table 3: Anjali Shafiee

	abic 5. Alijai					
Sample	iNaturalis t	Field Guides	DNA Barcoding by DNA subway	DNA barcoding by direct BLAST analysis	Notes	Link to iNaturalist
KRE-01 9	Xylobolus subpileatu s/ Bacon of the Woods	Xylobolus Frustulatus/ Ceramic fungus	Stereum Ostrea/ False turkey-tail	Inconclusive	Stereum Ostrea is found all over North America. Xylobolus Frustulatus and Stereum Ostrea they have similar color and appearance with a similar stripe pattern.	https://www.inat uralist.org/obser vations/1564038 70
KRE-02 0	<i>Trametes</i> <i>Versicolor</i> / Turkey Tail	<i>Trichaptum biforme/</i> Violet-toothe d polypore	Inconclusive	Inconclusive	<i>Trametes versicolor</i> and <i>Trichaptum</i> <i>biforme</i> are alike in size and shape, but different in color.	https://www.inat uralist.org/obser vations/1564034 48
KRE-02 1	Stereum Ostrea/	Trichaptum biforme/	Inconclusive	Trichaptum biforme	<i>Stereum ostrea</i> and <i>Trichaptum</i> are	https://www.inat uralist.org/obser

	False turkey-tail	Violet-toothe d polypore		(Percent identity 88.47%)	similar in both size and shape, but differ in color.	<u>vations/1564034</u> 01
KRE-02 2	Stereum Ostrea/ False turkey-tail	<i>Trichaptum biforme/</i> Violet-toothe d polypore	<i>Stereum</i> <i>Ostrea/</i> False turkey-tail	Stereum ostrea (Percent identity 99.49%)	Stereum Ostrea is found all over North America. Stereum ostrea and Trichaptum are similar in both size and shape, but differ in color.	https://www.inat uralist.org/obser vations/1564033 62
KRE-02 3	<i>Stereum</i> ostrea/ False turkey-tail	<i>Trichaptum biforme/</i> Violet-toothe d polypore	Stereum ostrea/ False turkey-tail	Stereum ostrea (Percent identity 99.83%)	Stereum ostrea is found all over North America. Stereum ostrea and Trichaptum are similar in both size and shape, but differ in color.	https://www.inat uralist.org/obser vations/1564033 20
KRE-02 4	<i>Trametops</i> <i>is cervina/</i> Deer-color ed Trametes	<i>Xylobolus</i> <i>frustulatus/</i> Ceramic fungus	No DNA sequence is available	No DNA sequence is available	Trametopsis cervina and Xylobolus frustulatus are very similar in color, shape, and size. They both are local to the Westchester, New York area.	https://www.inat uralist.org/obser vations/1586060 39
KRE-02 5	Fomitopsi s betulina/ Birch polypore	Fomes fomentarius/ Hoof fungus	<i>Trametes</i> <i>versicolor/</i> Turkey Tail	Trametes versicolor/ (Percent identity 100.00%)	The Fomitopsis Betulina and Fomes Fomentarius exist on alive trees and look almost identical in appearance, which may be why they were used to classify the sample, which looks similar to both of the fungi.	https://www.inat uralist.org/obser vations/1564032 88
KRE-02 6	<i>Lycoperdo</i> n/ Puffballs	Lycoperdon pyriforme/ Pear shaped	Suhomyces vadensis/ Budding	Forward sequence Lycoperdon	<i>Suhomyces vadensis</i> is a yeast fungus. The DNA subway	https://www.inat uralist.org/obser vations/1566162

	Puffball	yeasts	<i>pyriforme</i> (Percent identity 98.93%) <u>Apioperdon -</u> <u>Wikipedia</u> Reverse sequence <i>Suhomyces</i> <i>vadensis</i> (Percent identity 97.14%)	results yielded two different species of fungus. <i>Lycoperdon</i> <i>pyriforme</i> is a mushroom in the puffball family. Previously to collecting the sample the mushroom had died and started to decay, causing <i>Suhomyces</i> <i>vadensis</i> to grow. <i>Suhomyces vadensis</i> picked up the fungi primer while DNA barcoding, allowing for both species to be identified.	76
--	----------	--------	---	---	----

Table 4: List of species of mushrooms identified by DNA barcoding

Species 1	Stereum fasciatum/Stereum lobatum/Stereum ostrea			
Species 2	Trametes gibbosa			
Species 3	Trichaptum biforme			
Species 4	Trametes versicolor			
Species 5	Stereum complicatum			
Species 6	Sarcophsyca austriaca			
Species 7	Lenzites betulinus/Trametes betulina			
Species 8	Lycoperdon pyriforme			

Table 5: List of microscopes species of fungi, identified inadvertently

Genus 1	Phaeocalicium sp
Species 1	Suhomyces vadensis

Discussion

The research goal of this study was to determine the biodiversity of mushrooms in Rockefeller State Park. We collected 26 specimens of mushrooms. We successfully isolated

DNA for 24 specimens. Out of these 24 specimens we were able to analyze DNA sequence by DNA subway and/or directly by BLAST in 22 cases. We identified 8 species of mushrooms, and also 2 species of microscopic fungi, which are not mushrooms, and which got into our samples inadvertently.

From the results obtained, we can conclude that our use of DNA barcoding was successful in finding the biodiversity in Rockefeller State Park, as we have identified and compiled a list of various fungi that exist in the area. We found that many of the species of our samples that we identified using iNaturalist and field guides did not match the species of the mushroom samples once DNA barcoding was complete. This suggests that iNaturalist and Field Guides may not always have the most accurate or reliable results.

This study can be improved in the future by potentially examining the biodiversity of fungi in the Rockefeller State Park in different seasons, not just in April strictly. Several fungi may exist in the Rockefeller that were not in season, and therefore could not be sampled. To make a more comprehensive list, we could improve this by collecting year-round.

References

- 1. *Mushroom* | *Definition, Characteristics, Species, & Facts.* (2023, January 17). Encyclopedia Britannica. Retrieved January 24, 2023, from https://www.britannica.com/science/mushroom
- 2. Forest Mushrooms. (n.d.). Canadian Forest Service. Retrieved January 24, 2023, from https://www.for.gov.bc.ca/hfp/publications/00029/mushtxt.htm
- 3. Fungus Evolution and phylogeny of fungi. (n.d.). Encyclopedia Britannica. Retrieved January 27, 2023, from https://www.britannica.com/science/fungus
- 4. Viana, C. (2021, September 10). *Benefits of Fungi for the Environment and Humans*. Chloride Free Foundation. Retrieved January 24, 2023, from https://chloridefree.org/en/benefits-of-fungi-for-the-environment-and-humans/
- 5. Chang, S. T., & Miles, P. G. (2004, March 29). *Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact.* CRC Press.
- 6. Kulshreshtha, S., Mathur, N., & Bhatnagar, P. (2014, April 1). *Mushroom as a product and their role in mycoremediation*. PubMed Central (PMC). Retrieved January 24, 2023, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052754/
- Tchudi. (2021, January 1). *Mitigating on-farm toxins using fungi: a case study on two farms*. Sustainable Agricultural Research and Education Projects. Retrieved January 24, 2023, from https://projects.sare.org/project-reports/fw20-365/
- Valverde, M. E., Hernández-Pérez, T., & Paredes-López, O. (2015, January 20). *Edible Mushrooms: Improving Human Health and Promoting Quality Life*. PubMed Central (PMC). Retrieved January 24, 2023, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4320875/
- 8.15: Human Uses of Fungi. (2016, September 30). Biology LibreTexts. Retrieved January 24, 2023, from https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_Int roductory_Biology_(CK-12)/08%3A_Protists_and_Fungi/8.15%3A_Human_Uses_of_Fu ngi
- Rockefeller State Park Preserve. (2001, January 28). New York State. Retrieved January 27, 2023, from https://www.parks.ny.gov/parks/59.#:~:text=%EE%80%80Rockefeller%EE%80%81%20 %EE%80%80State%EE%80%81%20%EE%80%80Park%EE%80%81%20%EE%80%8 0Preserve%EE%80%81%20offers%20quiet%20countryside%20walks,of%20John%20D. %20%EE%80%80Rockefeller%EE%80%81%20family%20and%20William%20%EE%8 0%80Rockefeller%EE%80%81.
- 11. Davy. (n.d.). History of mushroom cultivation. Lowimpact.org. Retrieved January 27, 2023, from https://www.lowimpact.org/infoarticle/history-of-mushroom-cultivation/

- 12. Lincoff. (1981, December 12). Field Guide to Mushrooms- North America. Alfred A. Knopf. https://www.aaknopf.com
- Miller, O. K., & Miller, H. H. (2006, May 1). North American Mushrooms. In A Field Guide to Edible and Inedible Fungi. FalconGuides. https://doi.org/10.1604/9780762731091
- 14. NYS OPRHP GIS Bureau [cartographer]. (2014) Trial Map Rockefeller State Park Preserve [map]. Retrieved January 27, 2023, from <u>http://www.fmppl.org/pages/Rockefeller%20Park%20Trail%20Map.pdf</u>
- 15. *Protocol: Using DNA Barcoding to Identify Living Things*. DNA learning center barcoding 101. (n.d.). <u>https://dnabarcoding101.org/resources/</u>
- 16. U.S. National Library of Medicine. (n.d.). *Blast: Basic local alignment search tool*. National Center for Biotechnology Information. <u>https://blast.ncbi.nlm.nih.gov/Blast.cgi</u>