
Introduction • Object of the study was to answer the question: How does biodiversity of plants differ between a meadow and a salt marsh? **<u>Hypothesis</u>**: We hypothesized that there would be species endemic to each site as well as grasses, shrubs, and flowers common in both the salt marsh and meadow biomes Biodiversity measured by species richness □ We **collected** different plants from the meadows and salt marsh, DNA sequenced them, and **compared** them The meadows of Randall's Island are the habitat for **native species** Switchgrass, Seaside Goldenrod, New York Aster, Milkweed, and more New York salt marshes are the habitat for **native plants** such as Saltgrass, and Butterfly milkweed Meadows and salt marshes are vital ecosystems that **provide habitats** for wildlife □ Salt marshes are defined as ecosystems between open water and land □ Salt marshes are especially important in our changing environment because they serve as flood protection and help stabilize shores Meadows are also uniquely important

because they absorb storm runoff

Materials & Methods
Collection: 11 plant samples from salt
marsh and meadow and filled tubes with
ethanol. Identified them with the Seek app
Extraction: Added 300µL of lysis buffer &
grounded samples. Then added $3\mu L$ of
silica resin and rinsed the DNA with 500µL
of cool wash buffer three times. Finally,
added 100µL of distilled water
Amplification: We used <i>rbcl</i> primers and
added 23μ L of <i>rbc</i> L primer with 2μ L of the
homogeneous DNA solution. Then,
corresponding procedure for PCR
Gel Electrophoresis: 5µL of each sample
with 2% agarose solution
DNA Analysis: DNA Subway to create

MUSCLE and phylogenetic tree figures

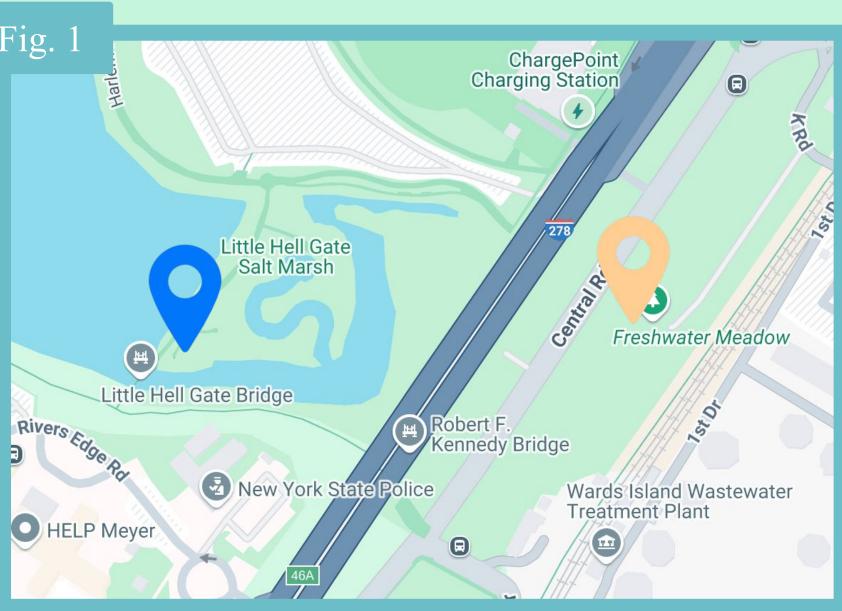

related

Fig.

PLANT DIVERSITY IN RANDALL'S ISLAND ABIGAIL KAUFMAN¹, FARAH MAHMUD¹, CORDELIA HARTING¹

¹Ethical Culture Fieldston School

Results

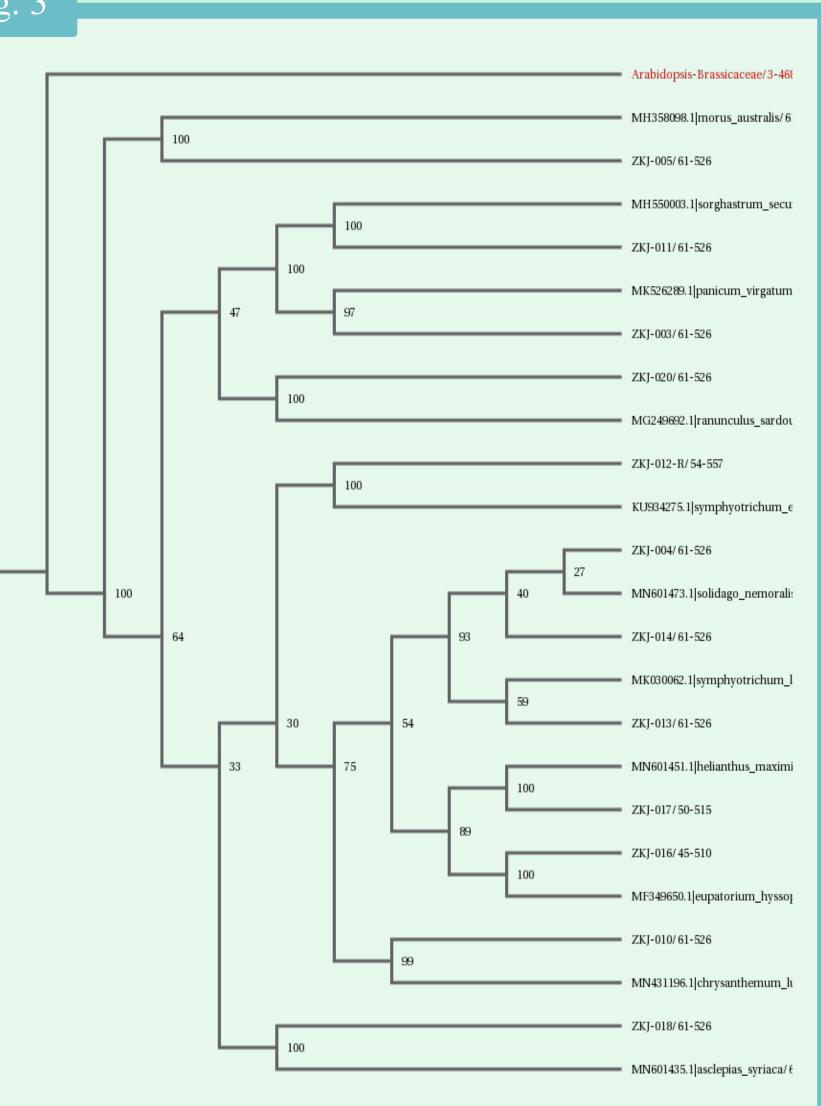
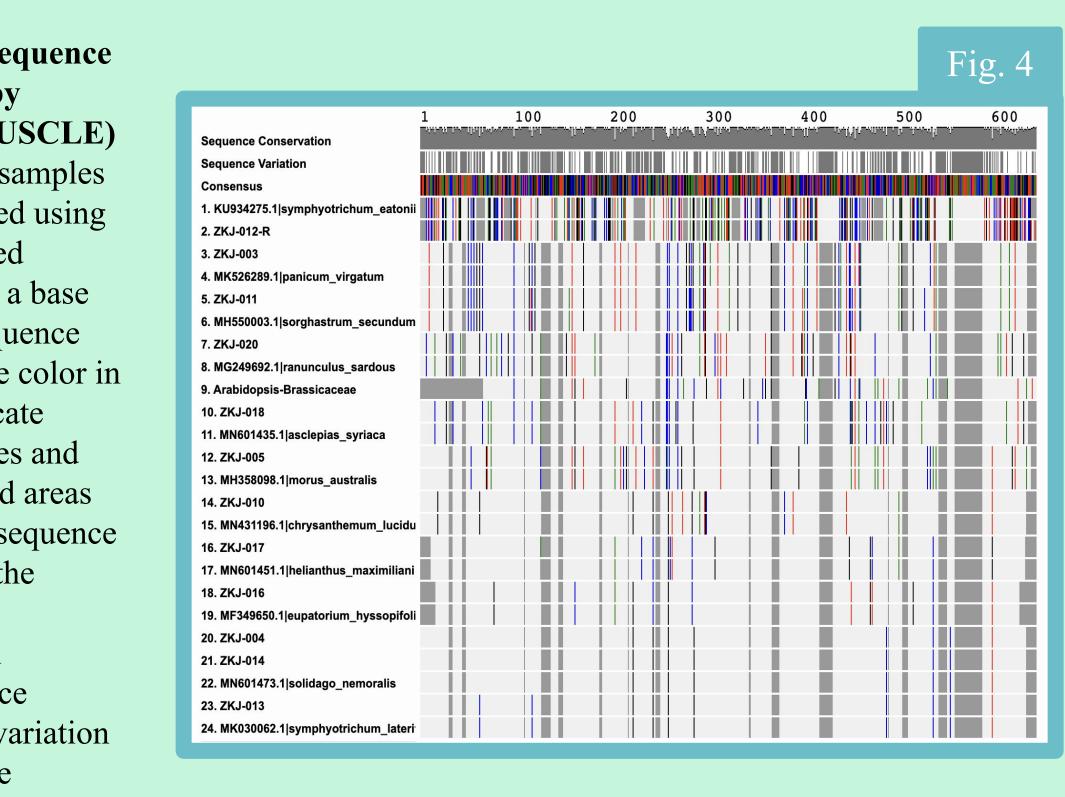


Figure 1: Sample Collection Location - Randall's Island The pins indicate locations where samples were collected. The blue pin is the first site where samples were collected. This area is near Little Hell Gate bridge, a salt marsh and brackish water. The orange pin is the second site, Freshwater Meadow. This area is a freshwater meadow that was curated to grow native plants.

Figure 2: Gel **Electrophoresis of Samples** 011-019 (04/08)

The yellow lines to the write of the labels indicate the presence of DNA found in the sample. The absence of a yellow line suggests that DNA could not be found in the sample, likely due to an extraction error.

Figure 3: Phylogenetic Tree of Sequencing Results The phylogenetic tree, using Neighbor Joining (NJ), consists of 12 plant samples with the outgroup Arabidopsis Brassicaceae. The numbers shown represent the bootstrap value. This shows the evolutionary similarities between species and how closely they are


Т							Table 1
Sample	Site			Aln.			
Number	Number	Seek ID	BLASTIN ID	Length	Bit Score		Mismatches
ZKJ-003	1	Grasses	1. Panicum virgatum	535	966	0	0
			1. Solidago nemoralis				
			2. Solidago canadensis				
			3. Solidago tortifolia				
ZKJ-004	1	Goldenrods	 Solidago stricta Solidago leavenworthii 	534	964	0	0
Z1XJ-004	1	Coldemous	1. Morus australis	557		0	
ZKJ-005	1	Dicots	2. Morus alba	539	973	0	0
			1. Chrysanthemum lucidum			0	
			 2. Artemisia sp. 				
ZKJ-010	1	Dicots	3. Asteraceae sp.	534	964	0	0
			1. Sorghastrum secundum				
			2. Sorghastrum nutans				
			3. Trachypogon spicatus				
ZKJ-011	1	Grasses	4. Sorghastrum nutans	537	969	0	0
ZKJ-012	2	American Asters	1. Symphyotrichum eatonii	570	1029	0	0
			1. Symphyotrichum lateriflorum				
			2. Eclipta prostrata				
7121.012			3. Symphyotrichum dumosum	5 0 A	0.64	0	0
ZKJ-013	2	American Asters	4. Symphyotrichum cordifolium	534	964	0	0
			1. Solidago nemoralis				
			 Solidago canadensis Solidago tortifolia 				
			4. Solidago stricta				
ZKJ-014	2	Goldenrods	5. Solidago leavenworthii	534	964	0	0
ZKJ-016	2	Bonesets	1. Eupatorium hyssopifolium	511	922	0	0
			1. Helianthus maximiliani				
			2. Helianthus petiolaris				
			3. Helianthus pauciflorus				
			4. Helianthus hirsutus				
ZKJ-017	2	Sunflowers	5. Helianthus grosseserratus	522	939	0	1
			1. Asclepias syriaca				
ZKJ-018	2	Milkweed	2. Asclepias exaltata	536	967	0	0
			1. Ranunculus sardous				
ZKJ-020	2	Buttercups	2. Ranunculus macranthus	536	967	0	0

This table indicates the BLASTIN ID, Alignment length, bit score, e-score, and mismatches for each sample. For many of our samples, there were multiple possible species matches with the exact same e-score, bit score, alignment length, and mismatches. Therefore, we cannot definitively identify some samples as one species.

Figure 4: Multiple Sequence Comparison by

Log-Expectation (MUSCLE) DNA Sequences from samples of plants were compared using MUSCLE. Each colored vertical line represents a base pair from the DNA sequence and lines with the same color in the same location indicate similarities in sequences and vice versa. Grey shaded areas indicate missing data, sequence conservation refers to the frequency of a certain nucleotide in the given sequences, and sequence variation refers to the variation in that column from the consensus.

Table 1: Results from DNA Sequencing and Seek ID

5	

	Discussion
	Out of the 22 samples collected, we
	identified five different species in site 1 and
	seven in site 2
	We cannot definitively identify the species
	for samples with multiple possible species
	matches (same bit score, e, and number of
	mismatches)
	Samples from both sites had the same
	species matches, under the genus Solidago,
	so there may have been endemic Solidago
	species
	Asters were found in both sites, but not
	necessarily the same species of Asters, so
	there is a possibility of an endemic species
	Surprisingly, <i>Chrysanthemum lucidum</i> (one
	of the matches for ZKJ-010) is native to
	Korea
	The rest of the species we found were
	unique to their respective habitats
┛	Errors during the isolation and
	amplification of DNA may have impacted
	the results of gel electrophoresis and sequencing
-	If this study were replicated in the future
	Spend more time carefully extracting
	DNA
	Collect a larger sample size
	Use a different measure of biodiversity
	Since our data set was limited, we cannot
	draw many conclusions on the difference
	in biodiversity between the salt marsh
	and meadow habitats

References

SCAN HERE:

Acknowledgements

Thank you to Mr. Waldman and Dr. Koppa for being incredible teachers and helping us through every step of the process. Thank you to UBP for providing us with the resources for this experiment.