Unveiling the hidden: using de novo transcriptomics in barcode analyses and mitogenomic assemblage of unknown Andean velvet worms
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Ab stract: Peripatus, an evolutionarily significant genus of flatworms, are commonly found 1n low-altitude, humid areas such as tropical or temperate rainforests. Thus, those found in high altitudes like the Andes mountains provide a fascinating line of inquiry into their adaptive molecular evolution. Similar to our previous research, where
we 1dentified high-altitude adapted planaria of the genus Amaga and reconstructed its mitochondrial (mt) genome, phylogeny, and life history implications, in this project, we present a similar study of high-altitude adapted velvet worms. Using Next-Generation Sequencing (NGS), we TRIzol RNA-extracted, sequenced the transcriptome samples,
and 1solated the cellular respiration barcode gene, COXI, for further analyses. Our methods show a transcriptomic approach in reconstructing the mt-genome and phylogeny of an unknown velvet worm. We suspect that our sample 1s a potential brother species of Peripatidae's radiative evolutionary family that harbors Epiperipatus boilleyi
bio-mimetic applications while presenting genetic data of similarly evolved species. Our findings connect with our prior research to holistically explain how these understudied and neglected Andean invertebrates adapt to such high altitudes to explain their adaptation and implications.

Introduction

Recent research on under-studied high-altitude invertebrates in the Andes, such as Amaga planaria and Peripatus velvet

worms have underscored their scientific potential.

* In 2022, our lab 1dentified a high-altitude adapted brother
species of Amaga expatria [1], noted for 1ts non-chemical
pest control potential against crop destroying
Deroceras reticulatum

* Velvet worms, members of the Onycophora phylum, are
diverse in their genera, sizes, colors, and shapes (Fig. 1)

* Velvet worms have been identified globally, illustrating
their Gondwana distribution; despite this, their locality 1s
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limited to low altitudes with the highest altitude found in Figure I: Different species and genera of the Onychophora phylum

the equatorial highlands of Ecuador (Fig. 2)

* Unfortunately, these animals are neglected 1n their
studies compared to Austral relatives [2] and popular
neural organismal model S. mediterranea [3]

* Velvet worms harbor potential to explain both organismal
and planetary evolutionary biology given their ancient
nature [4] and radiative Gondwana distribution [5]

* Their slime jet, a defense and prey capture mechanism is
applicable 1n bio-glue and bio-polymer mechanisms [6]
 In 2023, we collected Peripatus sp. velvet worm
specimens 1n Cuenca, 2560 meters above sea level and
conducted RNA extraction, transcriptome sequencing,

and COXI barcoding to explore adaptive molecular

* evolution within a six-module method of an RNA-based
metagenomic transcriptome assembly approach rather than
a DNA-based approach (Fig 3)

* COXI 1s the gene that encodes for cytochrome ¢ oxidase
and 1s an important discriminator in each species [7]

 The possible high-altitude adaptions of our unknown
organism and 1ts applications accompanied by the lack
of literature lead elucidate 1ts genetic evolution,
contributing to a comprehensive reference database and
advancing our understanding of biomedical and
industrial applications
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Figure 2: A widespread geographic distribution illustrating the Gondwana distribution of velvet worms (literature locality sightings in purple pins
versus our samples in yellow pin) with focus on altitude given that as altitude increases, oxygen concentration decreases, indicating strong potential
that selection occurs in high altitude dwelling velvet worms such as our samples

Methods

Transcriptome Assembly and
Annotation

Total RNA Extraction

NCBI BLAST

/\_ AZENTA
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TRIzol extraction of RNA | Sent Pncho ¢ read data from Azenta was COXT genes were isolated and

for sequencing, receiving
FASTQ files.

Mitogenome Reconstruction

MITObim

Using MITObim, a
reconstruction of the
mitogenome was completed.

fragmented and split into
individual genes.

Phylogenetic Reconstruction

|Qtree2 created a phylogeny
tree of estimated evolutionary
relationships from raw read
compared to BLAST sequences.

genetic relatives collected from
BLAST.

Slime Jet Analysis

Previous scholarly research
was collected on the nature of
the Onychophora slime jet.

Figure 3: A six-module method of our project involving 1) RNA extraction, purification, and sequencing, i1) transcriptome processing via Pincho
[8], 11) BLAST analysis, 1v) reconstructing mitogenome, v) reconstructing phylogeny, and vi) analyzing the predictions of our sample’s slime jet

Results

Velvet worm relatives percgrﬁl?antity e-value accession number
Epiperipatus biolleyi 78.24% 0 NC 009082.1
Oroperipatus sp. DVL-2011 85.21% 0 NC 015890.1
Epiperipatus acacioi 84.89% 0 PP054361.1
Epiperipatus biolleyi 84.25% 0 HM600781.1
Peripatoides sp. DVL-2010 82.72% 0 HM600782.1

Table 1: The top five relatives of all samples with their percent identity, e-value, and accession number. Also
interesting to note, midsections had BLAST outputs of various insects, such as beetles (Haliplus or Monochamus
genera), flies (Drosophila, Lonchoptera, or Dicerapanorpa genera), and mosquitos (Bironella, Anophles, and

Sabethes) genera
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Figure 4: The mitogenome of one of our samples of four genes, COX1, COX2, ND4, and NDJ5, and their respective
gene expressions shown by the purple histogram

PHYLOGENETIC RECONSTRUCTION
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Figure 5: The phylogenetic tree of our sample. The tree is divided into three main clades of genera, and we found that
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our sample 1s within the Onychophora phylum, the Peripatidae family, likely of the Epiperipatus or Oroperipatus
genera with bootstrap values representative of each node

* Based on BLAST (Table 1), DISCU’SSIOH

* our species 1s confirmed to be a part of the Onychophora phylum, likely of the Epiperipatus genus and Peripatidae
family, a group of velvet worms inhabit the neotropics and 1s found 1n high altitudes and viviparous

* given the unresolved phylogenetic relationships between velvet worms and the evolutionary radiation of the
Gondwana distribution, our results show precise phylogenetic distinctions via transcriptomics

* various Insects within the midsections of the specimen were i1dentified, indicating the sample’s carnivorous diet via

the precision of transcriptomics
* Based on our mitogenomic reconstruction (Fig. 4),

 we were able to harvest four mitogenes from our sample; it was anticipated to be incomplete given the lack of
genetic data available on these animals
* 1t 1s necessary to develop more refined methods 1n mitogenomics, such as transcriptomics
* Based on our phylogenetic reconstruction (Fig. 5),
* the animal likely of the high-altitude adapted genus Epiperipatus, explaining how these cryptic species evolved and
what 1t means to speciation and the evolution of our Earth, often misunderstood from sole morphological analysis
* Based on our slime jet inference (Fig. 6),
* slime jet frequency and hardening time after making contact with the surface can be made
* findings imply a new relative species in bio-adhesive and biopolymer applications with potential in human wound
and organ care without the harm of artificially synthesized polymer additives

* In total, our results harbor {fascinating
applications 1n using transcriptomics
to better understand the adaptive radiative
evolution of the  neglected yet
evolutionarily  relevant ~ Onychophora
phylum and 1ts life history diet and prey
capture mechanisms via slime jet 1n
bio-mimetic applications

* We prove that studying phylogenetic
connections through molecular data 1s
superior to  the leading  modern
bioinformatic big data tools

Epiperipatus bolilleyi
(84% similarity)

Abundant encapsulated phosphate
and carbonate salts with carbon
dioxide bubbles to fasten liquid to
solid transition (10 seconds)

Figure 6: Predictions to be made given our sample’s 84% similarity to the applicable E. boilleyi; potential in bio-polymerization and bio-glues

Future Steps
* Investigate more velvet worms and Andean invertebrates to grow the
scope and sample size to increase the transcriptomic data available of

velvet worms

Wild Type

TTAATGACTCTCCGATGGTAACTTCTG

Mutant Type

TTAATGACTCCGATGGTAACTTCTG

Figure 7: Sequence analysis potential between

* Perform differential gene expression analysis to understand the genetic velvet worms based on localities

differences between highland and lowland living velvet worms by
analyzing adaptation-specific mutations

* Continue research on the velvet worm slime jets as they have the potential
to play a crucial role in the field of medicine and industrial design; in the
future, we may find other similarly evolved species with these similar

mechanisms to expand current databases (e.g. other worms, snails, frogs,
fish, etc.)

Figure 8: Slime jet cannon release of
Principapillatus hitoyensis
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